Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 3, 2009
Cancer modelling (Part 2)
Page(s) 97 - 116
Published online 05 June 2009
  1. B. Alberts, A. Johnson, J. Lewis, K. Roberts, P. Walter. Molecular Biology of the Cell, Fourth Edition. Garland Science, Taylor and Francis Group Ltd, Oxford, 2002. [Google Scholar]
  2. E. Appella, C.W. Anderson. Post-transcriptional modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem., 268 (2001), 2764–2772. [CrossRef] [PubMed] [Google Scholar]
  3. D. Bennett. Applications of Delay Differential Equations in Physiology and Epidemiology. PhD Thesis, University of Surrey, 2005. [Google Scholar]
  4. S. Bernard, B. Cajavec, L. Pujo-Menjouet, M.C. Mackey, H. Herzel. Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations. Phil. Trans. R. Soc. A, 364 (2006), 1155–1170. [CrossRef] [Google Scholar]
  5. A. Ciliberto, B. Novak, J.J. Tyson. Steady states and oscillations in the p53/mdm2 network. Cell Cycle, 4 (2005), 488–493. [CrossRef] [PubMed] [Google Scholar]
  6. M.L. Dequeant, E. Glynn, K. Gaudenz, M. Wahl, J. Chen, A. Mushegian, O. Pourquie. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science, 314 (2006), 1595–1598. [CrossRef] [PubMed] [Google Scholar]
  7. B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathematics, Philadelphia, 2002. [Google Scholar]
  8. C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson. Interdisciplinary Applied Mathematics, Mathematical Biology: Computational Cell Biology. Springer-Verlag, New York, 2002. [Google Scholar]
  9. R.S. Foo, Y.J. Nam, M.J. Ostreicher, M.D. Metzl, R.S. Whelan, C.F. Peng, A.W. Ashton, W. Fu, K. Mani, S.F. Chin, E. Provenzano, I. Ellis, N. Figg, S. Pinder, M.R. Bennett, C. Caldas, R.N. Kitsis. Regulation of p53 tetramerization and nuclear export by ARC. Proc. Natl. Acad. Sci. USA, 104 (2007), 20826–20831. [CrossRef] [Google Scholar]
  10. S.J. Gallagher, R.F. Kefford, H. Rizos. The ARF tumour suppressor. Intl. J. Biochem. Cell Biol., 38 (2006), 1637–1641. [CrossRef] [Google Scholar]
  11. Y. Haupt, R. Maya, A. Kazaz, M. Oren. Mdm2 promotes the rapid degradation of p53. Nature, 387 (1997), 296–299. [CrossRef] [PubMed] [Google Scholar]
  12. H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, R. Kageyama R. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science, 298 (2002), 840–843. [CrossRef] [PubMed] [Google Scholar]
  13. T.R. Hupp, A. Sparks, D.P. Lane. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell, 83 (1995), 237–245. [CrossRef] [PubMed] [Google Scholar]
  14. B.N. Kholodenko. Cell signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol., 7 (2006), 165–176. [CrossRef] [PubMed] [Google Scholar]
  15. S. Krishna, M.H. Jensen, K. Sneppen. Minimal model of spiky oscillations in NF-κB. Proc. Natl. Acad. Sci. USA, 103 (2006), 10840–10845. [CrossRef] [Google Scholar]
  16. A. Kusumi, S. Yasushi, Y. Mutsuya. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J., 65 (1993), 2021–2040. [CrossRef] [PubMed] [Google Scholar]
  17. G. Lahav, N. Rosenfield, A. Sigal, N. Geva-Zatorsky, A.J. Levine, M.B. Elowitz, U. Alon. Dynamics of the p53-mdm2 feedback loop in individual cells. Nat. Gen., 36 (2004), 147–150. [CrossRef] [PubMed] [Google Scholar]
  18. R. Lev Bar-Or, R. Maya, L.A. Segel, U. Alon, A.J. Levine, M. Oren. Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study. Proc. Natl. Acad. Sci. USA, 97 (2000), 11250–11255. [CrossRef] [Google Scholar]
  19. J. Lewis. Autoinhibition with transcriptional delay: a simple mechanism for the Zebrafish somitogenesis oscillator. Curr. Biol., 13 (2003), 1398–1408. [CrossRef] [PubMed] [Google Scholar]
  20. H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, S.L. Zipursky, J. Darnell. Molecular Cell Biology. W.F. Freeman and Company, New York, 2003. [Google Scholar]
  21. J. Luo, M. Li, Y. Tang, M. Laszkowska, R.G. Roeder, W. Gu. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 101 (2004), 2259–2264. [CrossRef] [Google Scholar]
  22. L. Ma, J. Wagner, J.J. Rice, W. Hu, A.J. Levine, G.A. Stolovitzky. A plausible model for the digital response of p53 to DNA damage. Proc. Natl. Acad. Sci. USA, 102 (2005), 14266–14271. [CrossRef] [Google Scholar]
  23. S.M. Mendrysa, M.E. Perry. The p53 tumor suppressor protein does not regulate expression of is own inhibitor, MDM2, except under conditions of stress. Mol. Cell Biol., 20 (2000), 2023–2030. [CrossRef] [PubMed] [Google Scholar]
  24. J. Meyers, J. Craig, D.J. Odde. Potential for control of signaling pathways via cell size and shape. Curr. Biol., 16 (2006), 1685–1693. [CrossRef] [PubMed] [Google Scholar]
  25. G.I. Mihalas, Z. Simon, G. Balea, E. Popa. Possible oscillatory behaviour in p53-mdm2 interaction computer simulation. J. Biol. Syst., 8 (2000), 21–29. [Google Scholar]
  26. N.A.M. Monk. Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Curr. Biol., 13 (2003), 1409–1413. [CrossRef] [PubMed] [Google Scholar]
  27. C.W. Mullineaux, A. Nenniger, N. Ray, C. Robinson. Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol., 188 (2006), 3442-3448. [CrossRef] [PubMed] [Google Scholar]
  28. D.E. Nelson, A.E. Ihekwaba, M. Elliott, J.R. Johnson, C.A. Gibney, B.E. Foreman, G. Nelson, V. See, C.A. Horton, D.G. Spiler, S.W. Edwards, H.P. McDowell, J.F. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D.B. Kell, M.R. White. Oscillations in NF-κB signaling control de dynamics of gene expression. Science, 306 (2004), 704–708. [CrossRef] [PubMed] [Google Scholar]
  29. S.R. Neves, P. Tsokas, A. Sarkar, E.A. Grace, P. Rangamani, S.M. Taubenfeld, C.M. Alberini, J.C. Schaff, R.D. Blitzer, I.I. Moraru, R. Iyengar. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell, 133 (2008), 666–680. [CrossRef] [PubMed] [Google Scholar]
  30. L. Nie, M. Sasaki, C.G. Maki C.G. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J. Biol. Chem., 282 (2007), 14616–14625. [CrossRef] [PubMed] [Google Scholar]
  31. B.A. Ogunnaike. Elucidating the digital control mechanism for DNA damage repair with the p53-mdm2 system: single cell data analysis and ensemble modelling. J. R. Soc. Interface, 3 (2006), 175–184. [CrossRef] [PubMed] [Google Scholar]
  32. J. Owen. Topological proteomics: a new approach to drug discovery. Drug Discovery Today, 6 (2001), 1081–1082. [CrossRef] [PubMed] [Google Scholar]
  33. I.G. Pearce, M.A.J. Chaplain, P.G. Schoeld, A.R.A. Anderson, S.F. Hubbard. Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: heterogeneous patterns and ecological implications. J. Theor. Biol., 241 (2006), 876–886. [PubMed] [Google Scholar]
  34. S. Pigolotti, S. Krishna, M.H. Jensen. Oscillation patterns in negative feedback loops. Proc. Natl. Acad. Sci. USA, 104 (2007), 6533–6537. [Google Scholar]
  35. W. Schubert. Cytomics in characterizing toponomes: towards the biological code of the cell. Cytometry, 69A (2006), 209–211. [CrossRef] [Google Scholar]
  36. J.A. Sherratt, M.A. Lewis, A.C. Fowler. Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA, 92 (1995), 2524–2528. [CrossRef] [Google Scholar]
  37. J.A. Sherratt, B.T. Eagen, M.A. Lewis. Oscillations and chaos behind predatorprey invasion: mathematical artifact or ecological reality? Philos. Trans. R. Soc. London B, 52 (1997), 79–92. [Google Scholar]
  38. J.A. Sherratt. Periodic travelling waves in cyclic predatorprey systems, Ecol. Lett., 352 (2001), 21–38. [Google Scholar]
  39. Shieh S.Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 91 (1997), 325–334. [CrossRef] [PubMed] [Google Scholar]
  40. Srividya, J., Gopinathan, M.S., Schnells, S. The effects of time delays in a phosphorylation-dephosphorylation pathway, Biophys. Chem., 125 (2007), 286–297. [CrossRef] [PubMed] [Google Scholar]
  41. Y. Tang, W. Zhao, Y. Chen, Y. Zhao, W. Gu. Acetylation is indispensable for p53 activation. Cell, 133 (2008), 612–626. [CrossRef] [PubMed] [Google Scholar]
  42. G. Tiana, M.H. Jensen, K. Sneppen. Time delay as a key to apoptosis induction in the p53 network, Eur. Phys. J. B, 29 (2002), 135–140. [CrossRef] [EDP Sciences] [Google Scholar]
  43. G. Tiana, S. Krishna, S. Pigolotti, M.H. Jensen, K. Sneppen. Oscillations and temporal signalling in cells. Phys. Biol., 4 (2007), R1–R17. [CrossRef] [PubMed] [Google Scholar]
  44. K.H. Vousden, D.P. Lane. p53 in health and disease. Nat. Mol. Cell Biol., 8 (2007), 275–283. [CrossRef] [Google Scholar]
  45. J. Wagner, L. Ma, J.J. Rice, W. Hu, A.J. Levine, G.A. Stolovitzky. p53-mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. I.E.E. Proc. Syst. Biol., 152 (2005), 109–118. [CrossRef] [Google Scholar]
  46. C. Wawra, M. Kuhl, H.A. Kestler. Extended analyses of the Wnt/β-catenin pathway: robustness and oscillatory behaviour. FEBS Lett., 581 (2007), 4043–4048. [CrossRef] [PubMed] [Google Scholar]
  47. O. Wolkenhauer, M. Ullah, P. Wellstead, K.H. Cho. The dynamic systems approach to control and regulation of intracellular networks. FEBS Lett., 579 (2005), 1846–1853. [CrossRef] [PubMed] [Google Scholar]
  48. A. Zauberman, D. Flusberg, Y. Haupt, Y. Barak, M. Oren. A functional p53-response intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res., 23 (1995), 2584–2592. [CrossRef] [PubMed] [Google Scholar]
  49. W.B.J. Zimmerman. Multiphysics Modeling With Finite Element Methods, Series on Stability, Vibration and Control of Systems, Series A - Vol.18. World Scientific Publishing Company, London, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.