Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 3, 2009
Cancer modelling (Part 2)
Page(s) 183 - 209
DOI https://doi.org/10.1051/mmnp/20094308
Published online 05 June 2009
  1. O. Arino. A survey of structured cell population dynamics. Acta Biotheor., 43 (1995), 3–25. [CrossRef] [PubMed]
  2. O. Arino and M. Kimmel. Comparison of approaches to modeling of cell population dynamics. SIAM J. Appl. Math., 53(1993), No. 5, 1480–1504.
  3. O. Arino and E. Sanchez. A survey of cell population dynamics. J. Theor. Med., 1 (1997), No. 1, 35–51. [CrossRef]
  4. S. Bernard and H. Herzel. Why do cells cycle with a 24 hour period? Genome Inform., 17, (2006), No. 1, 72–79.
  5. F. Bekkal Brikci, J. Clairambault, and B. Perthame. Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Modelling, 47 (2008), No. 7-8, 699–713. [CrossRef] [MathSciNet]
  6. F. Bekkal Brikci, J. Clairambault, B. Ribba, and B. Perthame. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol., 57 (2008), No. 1, 91–110. [CrossRef] [MathSciNet] [PubMed]
  7. J. Clairambault, S. Gaubert, and B. Perthame. An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations. C. R. Math. Acad. Sci. Paris, 345 (2007), No. 10, 549–554. [CrossRef] [MathSciNet]
  8. J. Clairambault, P. Michel, and B. Perthame. Circadian rhythm and tumour growth. C. R. Acad. Sci., 342 (2006), No. 1, 17–22.
  9. J. Clairambault, P. Michel, and B. Perthame. (2007) A mathematical model of the cell cycle and its circadian control, to appear in Mathematical modeling of Biological Systems, Volume I. A. Deutsch and L. Brusch and H. Byrne and G. de Vries and H.-P. Herzel (eds), Birkhäuser, pp 247–259 proceedings of ECMTB conference, Dresden 2005).
  10. R. Dautray and J.L. Lions. Mathematical Analysis and Numerical Methods for Science and Technology. Springer, 1988.
  11. M. Doumic. Analysis of a population model structured by the cells molecular content. Mathematical Modelling of Natural Phenomena, 2 (2007), No. 3, 121–152. [CrossRef] [EDP Sciences] [MathSciNet]
  12. E. Filipski, P.F. Innominato., M. Wu, X.M. Liand S. Iacobelli, L.J. Xian, and F. Levi. Effects of light and food schedules on liver and tumor molecular clocks in mice. Journal of the National Cancer Institute, 97 (April 2005), No. 7, 507–517, .
  13. E. Filipski, Verdun M King, X.M. Li, T. G. Granda, M. Mormont, XuHui Liu, B. Claustrat, M. H. Hastings, and F. Levi. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst, 94( May 2002), No 9, 690–697,.
  14. A. Goldbeter. A minimal cascade for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Nat. Acad. Sci. USA, 88 (October 1991), 9107–9111.
  15. R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, New York, NY, USA, 1986.
  16. J. Keener and J. Sneyd. Mathematical Physiology, volume 8. Springer, 1998.
  17. F. Levi, A. Altinok, J. Clairambault, and A. Goldbeter. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Phil. Trans. R. Soc. A, 366 (2008), 3575–3598. [CrossRef]
  18. F. Levi and U. Schibler. Circadian rhythms: mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol., 47 (2007), 593–628. [CrossRef] [PubMed]
  19. J.A.J. Metz and O. Diekmann. The dynamics of physiologically structured populations, volume 68 of L.N. in biomathematics. Springer, 1986.
  20. P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustration on growth models. J. Math. Pures et Appl., 84 (May 2005), No. 9, 1235–1260.
  21. D. O Morgan. The Cell Cycle. Primers in Biology. Oxford University Press, 2007.
  22. J.D. Murray. Mathematical Biology, volume 1. Springer, 3rd edition, 2002.
  23. B. Novak. Modeling the cell division cycle. Lund(Sweden), April 15-18 1999. Bioinformatics'99. Available online at: http://cellcycle.mkt.bme.hu/people/bnovak/pdfek/lund/talk.pdf.
  24. B. Perthame. Transport equations in biology. Birkhäuser, 2007.
  25. E. Seijo Solis. A report on the discretization of a one-phase model of the cell cycle. Inria internship report, INRIA, 2006.
  26. J.J. Tyson, K. Chen, and B. Novak. Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol., 2 (2001), 908–916. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.