Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 3, 2009
Cancer modelling (Part 2)
Page(s) 210 - 232
DOI https://doi.org/10.1051/mmnp/20094309
Published online 05 June 2009
  1. M. Adimy, and F. Crauste, Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay, Discrete Cont. Dyn. Syst. Ser. B 8 (2007), pp. 19–38. [Google Scholar]
  2. M. Adimy, F. Crauste, and A. El Abdllaoui, Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cells Dynamics with Several Delays, Math. Model. Nat. Phenom., 1 (2006), No. 2, pp. 1–22. [Google Scholar]
  3. M. Adimy, F. Crauste, and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), pp. 1328–1352. [Google Scholar]
  4. M. Adimy, F. Crauste, and S. Ruan, Periodic Oscillations in Leukopoiesis Models with Two Delays, J. Theor. Biol., 242 (2006), pp. 288–299. [Google Scholar]
  5. M. Adimy, F. Crauste, and S. Ruan, Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases, Bull. Math. Biol., 68 (2006), pp. 2321–2351. [Google Scholar]
  6. A.R.A. Anderson, K.A. Rejniak, P. Gerlee, and V. Quaranta, Modelling of Cancer Growth, Evolution and Invasion: Bridging Scales and Models, Math. Model. Nat. Phenom. 2 (2007), pp.1–27. [Google Scholar]
  7. A. Bauer, F. Tronche, O. Wessely, C. Kellendonk, H.M. Reichardt, P. Steinlein, G. Schutz, and H. Beug, The glucocorticoid receptor is required for stress erythropoiesis, Genes Dev. 13 (1999), pp. 2996–3002. [Google Scholar]
  8. J. Bélair, M.C. Mackey, and J.M. Mahaffy, Age-structured and two delay models for erythropoiesis, Math. Biosci. 128 (1995), pp. 317–346. [Google Scholar]
  9. S. Bernard, J. Bélair, and M.C. Mackey, Oscillations in cyclical neutropenia: new evidence based on mathematical modeling, J. Theor. Biol. 223 (2003), pp. 283–298. [Google Scholar]
  10. N. Bessonov, L. Pujo-Menjouet, and V. Volpert. Cell modelling of hematopoiesis. Math. Model. Nat. Phenom., 1 (2006), No. 2, pp. 81-103. [Google Scholar]
  11. N. Bessonov, I. Demin, L. Pujo-Menjouet, and V. Volpert. A multi-agent model describing self-renewal or differentiation effect of blood cell population. Mathematical and computer modelling, 49 (2009), pp. 2116-2127. [Google Scholar]
  12. D. Bonnet, Haematopoietic stem cells, Pathol. 197 (2002), pp. 430–440. [Google Scholar]
  13. V. Capasso, and D. Bakstein. An introduction to continuous-time stochastic processes. Birkhauser, Boston, 2005. [Google Scholar]
  14. C. Colijn, and M.C. Mackey, A mathematical model of hematopoiesis-I. Periodic chronic myelogenous leukemia, J. Theor. Biol. 237 (2005), pp. 117–132. [Google Scholar]
  15. C. Colijn, and M.C. Mackey, A mathematical model of hematopoiesis-II. Cyclical neutropenia, J. Theor. Biol. 237 (2005), pp. 133–146. erythropoiesis [Google Scholar]
  16. F. Crauste, L. Pujo-Menjouet, S. Génieys, C. Molina, and O. Gandrillon, Adding self-renewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis, J. Theor. Biol. 250 (2008), pp. 322–338. [Google Scholar]
  17. S. Dazy, F. Damiola, N. Parisey, H. Beug, and O. Gandrillon, The MEK-1/ ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells, Oncogene, 22 (2003), pp. 9205–9216. [Google Scholar]
  18. R. De Maria, U. Testa, L. Luchetti, A. Zeuner, G. Stassi, E. Pelosi, R. Riccioni, N. Felli, P. Samoggia, and C. Peschle, Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis, Blood, 93.3 (1999), pp. 796–803. [Google Scholar]
  19. I. Demin, F. Crauste, O. Gandrillon, and V. Volpert, A multi-scale model of erythropoiesis, Journal of Biological Dynamics (in press). DOI: 10.180/17513750902777642 [Google Scholar]
  20. A. Ducrot, and V. Volpert. On a model of leukemia development with a spatial cell distribution. Math. Model. Nat. Phenom., 2 (2007), No. 3, 101-120. [Google Scholar]
  21. O. Gandrillon, U. Schmidt, H. Beug, and J. Samarut, TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism, EMBO J. 18 (1999), pp. 2764–2781. [Google Scholar]
  22. S. Huang, Y.-P.Guo, G. May, and T. Enver, Bifurcation dynamics in lineage-commitment in bipotent progenitor cells, Dev. biol. 305 (2007), pp. 695–713. [Google Scholar]
  23. M.J. Koury, and M.C. Bondurant, Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells, Science, 248 (1990), pp. 378–381. [Google Scholar]
  24. C. Lacombe, and P. Mayeux, Biology of erythropoietin, Haematologica, 83 (1998), pp. 724–732. [Google Scholar]
  25. M. von Lindern, W. Zauner, G. Mellitzer, P. Steinlein, G. Fritsch, K. Huber, B. Löwenberg, and H. Beug, The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro, Blood, 94 (1999), pp. 550–559. [Google Scholar]
  26. M.C. Mackey, Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis, Blood, 51 (1978), pp. 941–956. [Google Scholar]
  27. F.M. Mazzella, C. Alvares, A. Kowal-Vern, and H.R. Schumacher, The acute erythroleukemias, Clin. Lab. Med., 20 (2000), pp. 119–37. [Google Scholar]
  28. V. Munugalavadla, and R. Kapur, Role of c-Kit and erythropoietin receptor in erythropoiesis, Critical Reviews in Oncology/Hematology, 54 (2005), pp. 63–75. [Google Scholar]
  29. J.D. Murray, Mathematical Biology, Springer, New York, 2004. [Google Scholar]
  30. B. Pain, C.M. Woods, J. Saez, T. Flickinger, M. Raines, S. Peyrol, C. Moscovici, M.G. Moscovici, H.J. Kung, P. Jurdic, et al., EGF-R as a hemopoietic growth factor receptor: the c-erbB product is present in normal chicken erythrocytic progenitor cells and controls their self-renewal, Cell, 65 (1991), pp. 37–46. [Google Scholar]
  31. J.C. Panetta, W.E. Evans, and M.H. Cheok, Mechanistic mathematical modeling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukemia cells, Br. Journal of Cancer, 94 (2006), pp. 93–100. [Google Scholar]
  32. L. Pujo-Menjouet, and M.C. Mackey, Contribution to the study of periodic chronic myelogenous leukemia, C.R. Biol. 327 (2004), pp. 235–244. [Google Scholar]
  33. I. Roeder, and I. Glauche, Towards an understanding of lineage specification in hematopoietic stem cells: A mathematical model for the interaction of transcription factors GATA-1 and PU.1, J. Theor. Biol. 241 (2006), pp. 852–865. [Google Scholar]
  34. C. Rubiolo, D. Piazzolla, K. Meissl, H. Beug, J.C. Huber, A. Kolbus, and M. Baccarini, A balance between Raf-1 and Fas expression sets the place of erythroid differentiation, Blood, 108 (2006), pp. 152–159. [Google Scholar]
  35. J.E. Rubnitz, B. Gibson, and B.O. Smith, Acute myeloid leukemia, Pediatr. Clin. North. Am., 55 (2008), 1, pp. 21–51. [Google Scholar]
  36. E. Shochat, S.M. Stemmer, and L. Segel, Human haematopoiesis in steady state and following intense perturbations, Bull. Math. Biol., 64 (2002), pp. 861–886. [Google Scholar]
  37. U. Testa, Apoptotic mechanisms in the control of erythropoiesis, Leukemia, 18 (2004), pp. 1176–1199. [Google Scholar]
  38. W. Vainchenker, A. Dusa, and S.N. Constantinescu, JAKs in pathologies: Role of Janus kinases in hematopoietic malignancies and immunodeficiencies, Seminars in Cell and Developmental Biology, 19 (2008), pp. 385–393. [Google Scholar]
  39. V. Vainstein, Y. Ginosar, M. Shoham, D.O. Ranmar, A. Ianovski, and Z. Agur, The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologically-based mathematical model, J. Theor. Biol., 234 (2005), pp. 311-327. [Google Scholar]
  40. V. Vainstein, Y. Ginosar, M. Shoham, A. Ianovski, A. Rabinovich, Y. Kogan, V. Selitser, and Z. Agur, Improving Cancer Therapy by Doxorubicin and Granulocyte Colony-Stimulating Factor: Insights from a Computerized Model of Human Granulopoiesis, Math. Model. Nat. Phenom., Vol. 1, No. 2 (2006), pp. 70–80. [Google Scholar]
  41. A. Volpert, Vl. Volpert, Vit. Volpert. Travelling wave solutions of parabolic systems. AMS, Providence, 1994. [Google Scholar]
  42. F.M. Watt, and B.L. Hogan, Out of Eden: stem cells and their niches, Science, 287 (2000), pp. 1427–1430. [Google Scholar]
  43. I.L. Weissman, Stem cells: units of development, units of regeneration, and units in evolution, Cell 100 (2000), pp. 157–168. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.