Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 4, 2009
Morphogenesis
Page(s) 131 - 148
DOI https://doi.org/10.1051/mmnp/20094405
Published online 11 July 2009
  1. M. Alber, H.G.E. Hentschel, B. Kazmierczak, S.A. Newman. Existence of solutions to a new model of biological pattern formation. J. Math. Anal. Appl., 308 (2005), No. 1, 175–194. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu, S.A. Newman. The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Bulletin of Mathematical Biology, 70 (2008), No. 2, 460–483. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. Y. Cheng, C.-W. Shu. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Mathematics of Computation, 77 (2008), No. 262, 699–730. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Cockburn, G. Karniadakis, C.-W. Shu. The development of discontinuous Galerkin methods, in Discontinuous Galerkin Methods: Theory, Computation and Applications, B. Cockburn, G. Karniadakis, and C.-W. Shu, Editors. Lecture Notes in Computational Science and Engineering, 11 (2000), Springer, 3–50. [Google Scholar]
  5. B. Cockburn, C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16 (2001), No. 3, 173–261. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Cockburn, C.-W. Shu. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numererical Analysis, 35 (1998), No. 6, 2440–2463. [CrossRef] [MathSciNet] [Google Scholar]
  7. H.G.E. Hentschel, T. Glimm, J.A. Glazier, S.A. Newman. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. B, 271 (2004), No. 1549, 1713–1722. [CrossRef] [Google Scholar]
  8. W. Hundsdorfer. Trapezoidal and midpoint splittings for initial-boundary value problems. Mathematics of Computation, 67 (1998), No. 223, 1047–1062. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.K. Kundu. Fluid Mechanics. Academic Press, Inc, London, 1990. [Google Scholar]
  10. D. Levy, C.-W. Shu, J. Yan. Local discontinuous Galerkin methods for nonlinear dispersive equations. Journal of Computational Physics, 196 (2004), No. 2, 751–772. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Madzvamuse, A.J. Wathen, P.K. Maini. A moving grid finite element method applied to a model biological pattern generator. Journal of Computational Physics, 190 (2003), No. 2, 478–500. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Madzvamuse, P.K. Maini, A.J. Wathen. A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. J. Sci. Comput., 24 (2005), No. 2, 247–262. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Madzvamuse. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. Journal of Computational Physics, 214 (2006), No. 1, 239–263. [CrossRef] [MathSciNet] [Google Scholar]
  14. C.E. Nelson, B.A. Morgan, A.C. Burke, E. Laufer, E. DiMambro, L.C. Murtaugh, E. Gonzales, L. Tessarollo, L.F. Parada, C. Tabin. Analysis of Hox gene expression in the chick limb bud. Development, 122 (1996), No. 5, 1449–1466. [PubMed] [Google Scholar]
  15. S.A. Newman, G.B. Müller. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J. Exp. Zoolog. B Mol. Dev. Evol. 304 (2005), No. 6, 593–609. [Google Scholar]
  16. S.A. Newman, R. Bhat. Activator-inhibitor dynamics of vertebrate limb pattern formation. Birth Defects Res C Embryo Today, 81 (2007), No. 4, 305–319. [CrossRef] [PubMed] [Google Scholar]
  17. S.A. Newman, S. Christley, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu, M. Alber. Multiscale models for vertebrate limb development. Curr. Top. Dev. Biol., 81 (2008), 311–340. [CrossRef] [PubMed] [Google Scholar]
  18. M.A. Ros, G.E. Lyons, S. Mackem, J.F. Fallon. Recombinant limbs as a model to study homeobox gene regulation during limb development. Dev. Biol., 166 (1994), No. 1, 59–72. [CrossRef] [PubMed] [Google Scholar]
  19. G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 8 (1968), No. 3, 506–517. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Summerbell. A descriptive study of the rate of elongation and differentiation of the skeleton of the developing chick wing. J. Embryol. Exp. Morphol., 35 (1976), No. 2, 241–260. [PubMed] [Google Scholar]
  21. T. Svingen, K.F. Tonissen. Hox transcription factors and their elusive mammalian gene targets. Heredity, 97 (2006), No. 2, 88–96. [CrossRef] [PubMed] [Google Scholar]
  22. C. Tickle. Patterning systems - from one end of the limb to the other. Dev. Cell, 4 (2003), No. 4, 449–458. [CrossRef] [PubMed] [Google Scholar]
  23. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for three classes of nonlinear wave equations. Journal of Computational Mathematics, 22 (2004), No. 2, 250–274. [Google Scholar]
  24. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for nonlinear Schrodinger equations. Journal of Computational Physics, 205 (2005), No. 1, 72–97. [CrossRef] [MathSciNet] [Google Scholar]
  25. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations. Physica D, 208 (2005), No. 1-2, 21–58. [CrossRef] [MathSciNet] [Google Scholar]
  26. Y. Xu, C.-W. Shu. Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Computer Methods in Applied Mechanics and Engineering, 195 (2006), No. 25-28, 3430–3447. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Yan, C.-W. Shu. A local discontinuous Galerkin method for KdV type equations. SIAM Journal on Numerical Analysis, 40 (2002), No. 2, 769–791. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Yan, C.-W. Shu. Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. Journal of Scientific Computing, 17 (2002), No. 1-4, 27–47. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Zhu, Y.-T. Zhang, S.A. Newman, M. Alber. Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. Journal of Scientific Computing, 40 (2009), No. 1-3, 391–418. [CrossRef] [MathSciNet] [Google Scholar]
  30. E. Zwilling. Development of fragmented and of dissociated limb bud mesoderm. Dev. Biol., 9 (1964), No. 1, 20–37. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.