Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 4, 2009
Morphogenesis
Page(s) 83 - 102
DOI https://doi.org/10.1051/mmnp/20094402
Published online 11 July 2009
  1. J. G. Abreu, N. I. Ketpura, B. Reversade, E. M. De Robertis. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol., 4 (2002), 599–604. [PubMed] [Google Scholar]
  2. M. Akam. Drosophila development: making stripes inelegantly. Nature, 341 (1989), 282–283. [CrossRef] [PubMed] [Google Scholar]
  3. T. Andl, S. T. Reddy, T. Gaddapara, S. E. Millar. WNT signals are required for the initiation of hair follicle development. Dev. Cell, 2 (2002), 643–653. [CrossRef] [PubMed] [Google Scholar]
  4. N. J. Armstrong, K. J. Painter, J. A. Sherratt. A continuum approach to modelling cell-cell adhesion. J. Theor. Biol., 243 (2006), 98–113. [CrossRef] [PubMed] [Google Scholar]
  5. R. Atit, R. A. Conlon, L. Niswander. EGF signaling patterns the feather array by promoting the interbud fate. Dev. Cell, 4 (2003), 231–240. [CrossRef] [PubMed] [Google Scholar]
  6. R. E. Baker, S. Schnell, P. K. Maini. A clock and wavefront mechanism for somite formation. Dev. Biol., 293 (2006), 116–126. [CrossRef] [PubMed] [Google Scholar]
  7. W. Balemans, W. Van Hul. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev. Biol., 250 (2002), 231–250. [PubMed] [Google Scholar]
  8. J. Cooke, E. C. Zeeman. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol., 58 (1976), 455–476. [CrossRef] [PubMed] [Google Scholar]
  9. E. J. Crampin, E. A. Gaffney, P. K. Maini. Reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bull. Math. Biol., 61 (1999), 1093–1120. [CrossRef] [PubMed] [Google Scholar]
  10. Y. Cui, R. Hackenmiller, L. Berg, F. Jean, T. Nakayama, G. Thomas, J. L. Christian. The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev., 15 (2001), 2797–2802. [PubMed] [Google Scholar]
  11. C. F. Drew, C. M. Lin, T. X. Jiang, G. Blunt, C. Mou, C. M. Chuong, D. J. Headon. The Edar subfamily in feather placode formation. Dev. Biol., 305 (2007), 232–245. [CrossRef] [PubMed] [Google Scholar]
  12. R. Dillon, P. K. Maini, H. G. Othmer Pattern formation in generalised Turing systems. I. Steady state patterns in systems with mixed boundary conditions. J. Math. Biol., 32 (1994), 345–393. [Google Scholar]
  13. S. Eaton. Release and trafficking of lipid-linked morphogens. Curr. Opin. Genet. Dev., 16 (2006), 17–22. [CrossRef] [PubMed] [Google Scholar]
  14. E. A. Gaffney, N. A. Monk. Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol., 68 (2006), 99–130. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. A. Gierer, H. Meinhardt. A theory of biological pattern formation. Kybernetik, 12 (1972), 30–39. [CrossRef] [PubMed] [Google Scholar]
  16. S.F. Gilbert. Developmental biology. Sinauer Associates, Sunderland, 2006. [Google Scholar]
  17. K. Harding, T. Hoey, R. Warrior, M. Levine. Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J., 8 (1989), 1205–1212. [PubMed] [Google Scholar]
  18. M. P. Harris, S. Williamson, J. F. Fallon, H. Meinhardt, R. O. Prum. Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 11734–11739. [CrossRef] [PubMed] [Google Scholar]
  19. L. Houghton, C. Lindon, B. A. Morgan. The ectodysplasin pathway in feather tract development. Development, 132 (2005), 863–872. [CrossRef] [PubMed] [Google Scholar]
  20. T. X. Jiang, H. S. Jung, R. B. Widelitz, C. M. Chuong. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development, 126 (1999), 4997–5009. [PubMed] [Google Scholar]
  21. T. X. Jiang, R. B. Widelitz, W. M. Shen, P. Will, D. Y. Wu, C. M. Lin, H. S. Jung, C. M. Chuong. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int. J. Dev. Biol., 48 (2004), 117–135. [CrossRef] [PubMed] [Google Scholar]
  22. H. S. Jung, P. H. Francis-West, R. B. Widelitz, T. X. Jiang, S. Ting-Berreth, C. Tickle, L. Wolpert, C. M. Chuong. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev. Biol., 196 (1998), 11–23. [CrossRef] [PubMed] [Google Scholar]
  23. M. Kashiwagi, T. Kuroki, N. Huh. Specific inhibition of hair follicle formation by epidermal growth factor in an organ culture of developing mouse skin. Dev. Biol., 189 (1997), 22–32. [CrossRef] [PubMed] [Google Scholar]
  24. E. F. Keller, L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26 (1970), 399–415. [CrossRef] [PubMed] [Google Scholar]
  25. S. Kondo. The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes Cells, 7 (2002), 535–541. [CrossRef] [PubMed] [Google Scholar]
  26. J. Laurikkala, J. Pispa, H. S. Jung, P. Nieminen, M. Mikkola, X. Wang, U. Saarialho-Kere, J. Galceran, R. Grosschedl, I. Thesleff. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development, 129 (2002), 2541–2553. [PubMed] [Google Scholar]
  27. M. Mandler, A. Neubüser. FGF signaling is required for initiation of feather placode development. Development, 131 (2004), 3333–3343. [CrossRef] [PubMed] [Google Scholar]
  28. H. Meinhardt. Models for positional signalling with application to the dorsoventral patterning of insects and segregation into different cell types. Development, 107 Suppl (2004), 169–180. [Google Scholar]
  29. J. R. Mooney, B. N. Nagorcka. Spatial patterns produced by a reaction-diffusion system in primary hair follicles. J. Theor. Biol., 115 (1985), 299–317. [CrossRef] [PubMed] [Google Scholar]
  30. C. Mou, B. Jackson, P. Schneider, P. A. Overbeek, D. J. Headon. Generation of the primary hair follicle pattern. Proc. Natl. Acad. Sci. U.S.A., 103 (2006), 9075–9080. [CrossRef] [PubMed] [Google Scholar]
  31. J. D. Murray. Pattern formation in integrative biology–a marriage of theory and experiment. C. R. Acad. Sci. III, 323 (2000), 5–14. [CrossRef] [PubMed] [Google Scholar]
  32. J. D. Murray. On the mechanochemical theory of biological pattern formation with application to vasculogenesis. C. R. Biol., 326 (2003), 239–252. [CrossRef] [PubMed] [Google Scholar]
  33. B. N. Nagorcka, J. R. Mooney. The role of a reaction-diffusion system in the initiation of primary hair follicles. J. Theor. Biol., 114 (1985), 243–272. [CrossRef] [PubMed] [Google Scholar]
  34. K. Narhi, E. Jarvinen, W. Birchmeier, M. M. Taketo, M. L. Mikkola, I. Thesleff. Sustained epithelial beta-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development, 135 (2008), 1019–1028. [CrossRef] [PubMed] [Google Scholar]
  35. S. Noramly, A. Freeman, B. A. Morgan. beta-catenin signaling can initiate feather bud development. Development, 126 (1999), 3509–3521. [PubMed] [Google Scholar]
  36. S. Noramly, B. A. Morgan. BMPs mediate lateral inhibition at successive stages in feather tract development. Development, 125 (1998), 3775–3787. [PubMed] [Google Scholar]
  37. K. J. Painter, P. K. Maini, H. G. Othmer. Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 5549–5554. [CrossRef] [Google Scholar]
  38. K. Patel, H. Makarenkova, H. S. Jung. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech. Dev., 86 (1999), 51–62. [CrossRef] [PubMed] [Google Scholar]
  39. R. Paus, G. Cotsarelis. The biology of hair follicles. N. Engl. J. Med., 341 (1999), 491–497. [CrossRef] [PubMed] [Google Scholar]
  40. I. Salazar-Ciudad, J. Jernvall, S. A. Newman. Mechanisms of pattern formation in development and evolution. Development, 130 (2003), 2027–2037. [CrossRef] [PubMed] [Google Scholar]
  41. R. Schmidt-Ullrich, R. Paus. Molecular principles of hair follicle induction and morphogenesis. Bioessays, 27 (2005), 247–261. [CrossRef] [PubMed] [Google Scholar]
  42. P. Sengel. Morphogenesis of skin. CUP, Cambridge, 1976. [Google Scholar]
  43. S. Sick, S. Reinker, J. Timmer, T. Schlake. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314 (2006), 1447–1450. [CrossRef] [PubMed] [Google Scholar]
  44. H. Song, Y. Wang, P. F. Goetinck. Fibroblast growth factor 2 can replace ectodermal signaling for feather development. Proc. Natl. Acad. Sci. U.S.A., 93 (1996), 10246–10249. [CrossRef] [PubMed] [Google Scholar]
  45. A. A. Teleman, M. Strigini, S. M. Cohen. Shaping morphogen gradients. Cell, 105 (2001), 559–562. [CrossRef] [PubMed] [Google Scholar]
  46. A.M. Turing. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B, 237 (1952), 37–72. [CrossRef] [Google Scholar]
  47. G. Turk. Generating textures on arbitrary surfaces using reaction-diffusion. Comp. Graphics, 25 (1991), 289–298. [CrossRef] [Google Scholar]
  48. J.P. Vincent, J. Briscoe. Morphogens. Curr. Biol., 11 (2001), R851–854. [CrossRef] [PubMed] [Google Scholar]
  49. R. B. Widelitz, T. X. Jiang, J. Lu, C. M. Chuong. beta-catenin in epithelial morphogenesis: conversion of part of avian foot scales into feather buds with a mutated beta-catenin. Dev. Biol., 219 (2000), 98–114. [CrossRef] [PubMed] [Google Scholar]
  50. L. Wolpert. Principles of development. OUP, Oxford, 2006. [Google Scholar]
  51. M. Yamaguchi, E. Yoshimoto, S. Kondo. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), 4790–4793. [CrossRef] [PubMed] [Google Scholar]
  52. K. Yoshida, H. Munakata. Connective tissue growth factor binds to fibronectin through the type I repeat modules and enhances the affinity of fibronectin to fibrin. Biochim. Biophys. Acta, 1770 (2007), 672–680. [PubMed] [Google Scholar]
  53. M. Yu, Z. Yue, P. Wu, D. Y. Wu, J. A. Mayer, M. Medina, R. B. Widelitz, T. X. Jiang, C. M. Chuong. The biology of feather follicles. Int. J. Dev. Biol., 48 (2004), 181–191. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.