Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 4, 2009
Morphogenesis
Page(s) 103 - 117
DOI https://doi.org/10.1051/mmnp/20094403
Published online 11 July 2009
  1. M. Abercrombie. The crawling movement of metazoan cells. Proc. R. Soc. Lond. B. Biol. Sci., 207 (1980), No. 1167, 129–147. [Google Scholar]
  2. I. Arnold, F. M. Watt. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol., 11 (2001), No. 8, 558–568. [CrossRef] [PubMed] [Google Scholar]
  3. B. Basse, B. C. Baguley, E. S. Marshall, W. R. Joseph, B. van Brunt, G. C. Wake, D. J. N. Wall. A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol., 47 (2003), No. 4, 295–312. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. S. Bernard, L. Pujo-Menjouet, M. C. Mackey. Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data. Biophys. J., 84 (2003), 3414–3424. [CrossRef] [PubMed] [Google Scholar]
  5. B. van Brunt, G. C. Wake, H. K. Kim. On a singular Sturm-Liouville problem involving an advanced functional differential equation. European J. Appl. Math., 12 (2001), 625–644. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Q. Cai, K. A. Landman, B. D. Hughes, C. M. Witt. T cell development in the thymus: From periodic seeding to constant output. J. Theor. Biol., 249 (2007), No. 2, 384–394, 2007. [Google Scholar]
  7. E. Clayton, D. P. Doupé, A. M. Klein, D. J. Winton, B. D. Simons, P. H. Jones. A single type of progenitor cell maintains normal epidermis. Nature, 446 (2007), 185–189. [CrossRef] [PubMed] [Google Scholar]
  8. E. Fuchs, S. Raghavan. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet., 3 (2002), 199–209. [Google Scholar]
  9. A. B. Glick, A. B. Kulkarni, T. Tennenbaum, H. Hennings, K. C. Flanders, M. O'Reily, M. B. Sporn, S. Karlsson, S. H. Yuspa. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. USA, 90 (1993), 6076–6080. [CrossRef] [Google Scholar]
  10. M. A. Hjortsø. Population balances in biomedical engineering: Segregation through the distribution of the cell states. McGraw-Hill, 2006. [Google Scholar]
  11. M. D. Johnston, C. M. Edwards, W. F. Bodmer, P. K. Maini, S. J. Chapman. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. USA, 104 (2008), No. 10, 4008–4013. [Google Scholar]
  12. W.-C. Lo, C.-S. Chou, K. K. Gokoffski, F. Y.-M. Wan, A. D. Lander, A. L. Calof, Q. Nie. Feedback regulation in multistage cell lineages. Math. Biosci. Eng., 6 (2008), No. 1, 59–82. [Google Scholar]
  13. T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor. Biol. Med. Model., 4 (2007), No. 26. [Google Scholar]
  14. M. Mangel, M. B. Bonsall. Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability. PLoS one, 3 (2008), No. 2, e1591. [Google Scholar]
  15. N. V. Mantzaris. Single-cell gene-switching networks and heterogeneous cell population phenotypes. Comput. Chem. Eng., 29 (2005), 631–643. [CrossRef] [Google Scholar]
  16. J. D. Murray. Mathematical biology, Vol. 1, New York: Springer, 2002. [Google Scholar]
  17. M. Nair, A. Teng, V. Bilanchone, A. Agrawal, B. Li, X. Dai. Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-Myc transcription. J. Cell. Biol., 173 (2006), No. 2, 253–264. [CrossRef] [PubMed] [Google Scholar]
  18. S. Pelengaris, T. Littlewood, M. Khan, G. Elia, G. Evan. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell, 3 (1999), No. 5, 565–577. [CrossRef] [PubMed] [Google Scholar]
  19. L. F. Shampine. Solving hyperbolic PDEs in Matlab. Appl. Num. Anal. Comp. Math., 2 (2005), No. 3, 346–358. [Google Scholar]
  20. I. P. Tomlinson, W. F. Bodmer. Failure of programmed cell death and differentiation as causes of tumors: some simple mathematical models. Proc. Nat. Acad. Sci. USA, 92 (1995), 11130–11134. [CrossRef] [Google Scholar]
  21. R. L. Waikel, Y. Kawachi, P. A. Waikel, X.-J. Wang, D. R. Roop. Deregulated expression of c-Myc depletes epidermal stem cells. Nat. Genet., 28 (2001), No. 2, 165–168. [Google Scholar]
  22. G. Wang. Estimation of the proliferation and maturation functions in a physiologically structured model of thymocyte development. J. Math. Biol., 54 (2007), 761–786. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. F. M. Watt, M. Frye, S. A. Benitah. Myc in mammalian epidermis: how can an oncogene stimulate differentiation?. Nat. Rev. Cancer, 8 (2008), 234–242. [CrossRef] [PubMed] [Google Scholar]
  24. J. J. Willie Jr, M. R. Pittelkow, G. D. Shipley, R. E. Scott. Integrated control of growth and differentiation of normal human prokeratinocytes cultures in serum-free medium: clonal analyses, growth kinetics and cell cycle studies. J. Cell. Physiol, 121 (1984), 31–44. [CrossRef] [PubMed] [Google Scholar]
  25. A. Wilson, M. J. Murphy, T. Oskarsson, K. Kaloulis, M. D. Bettess, G. M. Oser, A.-C. Pasche, C. Knabenhans, H. R. MacDonald, A. Trumpp. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes. Dev, 18 (2004), 2747–2763. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.