Free Access
Issue
Math. Model. Nat. Phenom.
Volume 4, Number 6, 2009
Ecology (Part 1)
Page(s) 1 - 53
DOI https://doi.org/10.1051/mmnp/20094601
Published online 27 November 2009
  1. S. Breznitz (Ed.). The denial of stress. New York: International Universities Press, Inc., 1983. [Google Scholar]
  2. I.M. Bomze. Regularity vs. degeneracy in dynamics, games, and optimization: a unified approach to different aspects. SIAM Review, 44 (2002), 394-414. [CrossRef] [Google Scholar]
  3. G.V. Bulygin, A.S. Mansurov, T.P. Mansurova, A.A. Mashanov, E.V. Smirnova. Impact of health on the ecological stress dynamics. Institute of Biophysics, Russian Academy of Sciences, Preprint 185B, Krasnoyarsk, 1992. [Google Scholar]
  4. G.V. Bulygin, A.S. Mansurov, T.P. Mansurova, E.V. Smirnova. Dynamics of parameters of human metabolic system during the short-term adaptation. Institute of Biophysics, Russian Academy of Sciences, Preprint 180B, Krasnoyarsk, 1992. [Google Scholar]
  5. B.S. Cade, J.W. Terrell, R.L. Schroeder. Estimating effects of limiting factors with regression quantiles. Ecology, 80 (1999), 311–323. [CrossRef] [Google Scholar]
  6. R. Cangelosi, A. Goriely. Component retention in principal component analysis with application to cDNA microarray data. Biology Direct, 2 (2007). Online: http://www.biology-direct.com/content/2/1/2 [Google Scholar]
  7. T. Colborn, D. Dumanoski, J.P. Meyers. Our stolen future: are we threatening our fertility, intelligence, and survival? – A Scientific Detective Story. Dutton, Peguin Books, NY, 1996. [Google Scholar]
  8. S. Çukur, M. Eryigit, R. Eryigt. Cross correlations in an emerging market financial data. Physica A, 376 (2007), 555–564. [CrossRef] [Google Scholar]
  9. H.E. Daly. Population and economics – a bioeconomic analysis. Population and Environment, 12 (1991), 257–263. [CrossRef] [Google Scholar]
  10. T. De Donder, P. Van Rysselberghe. Thermodynamic theory of affinity. A book of principles. Stanford: University Press, 1936. [Google Scholar]
  11. S. Drożdż, F. Grümmer , A.Z. Górski, F. Ruf, J. Speth. Dynamics of competition between collectivity and noise in the stock market. Physica A, 287 (2000) 440–449. [Google Scholar]
  12. A.C. Eliasson, C. Kreuter. On currency crisis: a continuous crisis definition (Deutsche Bank Research Quantitative Analysis Report), Conference paper, X International “Tor Vergata" Conference on Banking and Finance, December 2001. [Google Scholar]
  13. M. Feinberg. Chemical kinetics of a sertain class. Arch. Rat. Mech. Anal., 46 (1972), 1–41. [Google Scholar]
  14. G.F. Gause. The struggle for existence. Williams and Wilkins, Baltimore, 1934. Online: http://www.ggause.com/Contgau.htm. [Google Scholar]
  15. W.N. Goetzmann, L. Li, K.G. Rouwenhorst. Long-term global market correlations (October 7, 2004). Yale ICF Working Paper No. 08-04. Available at SSRN: http://ssrn.com/abstract=288421 [Google Scholar]
  16. B. Goldstone. The general practitioner and the general adaptation syndrome. S. Afr. Med. J. 26 (1952), 88–92, 106–109. PMID: 14901129, 14913266. [Google Scholar]
  17. P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, H.E. Stanley. Universal and Nonuniversal Properties of cross correlations in financial time series. Phys. Rev. Lett., 83 (1999), 1471–1474. [CrossRef] [Google Scholar]
  18. A.N. Gorban. Selection theorem for systems with inheritance. Math. Model. Nat. Phenom., 2, No. 4, 2007, 1–45. [Google Scholar]
  19. A.N. Gorban, V.T. Manchuk, E.V. Petushkova (Smirnova). Dynamics of physiological parameters correlations and the ecological-evolutionary principle of polyfactoriality. Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem [The Problems of Ecological Monitoring and Ecosystem Modelling], Vol. 10. Gidrometeoizdat, Leningrad, 1987, pp. 187–198. [Google Scholar]
  20. A.N. Gorban, O. Radulescu. Dynamic and static limitation in multiscale reaction networks, Revisited. Adv. Chem. Eng., 34 (2008), 103–173. [Google Scholar]
  21. A.N. Gorban, E.V. Smirnova, T.A. Tyukina. Correlations, risk and crisis: from physiology to finance. Physica A, submitted. arXiv preprint: http://arxiv.org/abs/0905.0129 (May 1, 2009). [Google Scholar]
  22. J.B.S. Haldane. The causes of evolution. Princeton Science Library, Princeton University Press, 1990. [Google Scholar]
  23. G.G. Judge, W.E. Griffiths, R.C. Hill, H. Lütkepohl, T.-C. Lee. The theory and practice of econometrics. Wiley Series in Probability and Statistics, # 49 (2nd ed.), Wiley, New York 1985. [Google Scholar]
  24. I.V. Karmanova, V.N. Razzhevaikin, M.I. Shpitonkov. Application of correlation adaptometry for estimating a response of herbaceous species to stress loadings. Doklady Botanical Sciences, 346–348 (1996), 4–7. [Translated from Doklady Akademii Nauk SSSR, 346, 1996.] [Google Scholar]
  25. F. Lillo, R.N. Mantegna. Variety and volatility in financial markets. Phys. Rev. E, 62 (2000), 6126 (2000). [Google Scholar]
  26. G. L. Litvinov, V. P. Maslov (Eds.). Idempotent mathematics and mathematical physics. Contemporary Mathematics, AMS, Providence, RI, 2005. [Google Scholar]
  27. F. Longin, B. Solnik. Is the correlation in international equity returns constant: 1960-1990? J. Internat. Money and Finance, 14, No. 1 (1995), 3–26. [Google Scholar]
  28. A.S. Mansurov, T.P. Mansurova, E.V. Smirnova, L.S. Mikitin, A.V. Pershin. How do correlations between physiological parameters depend on the influence of different systems of stress factors? In: Global & Regional Ecological Problems, R.G. Khlebopros (Ed.), Krasnoyarsk State Technical University Publ., 1994, 499–516. [Google Scholar]
  29. A.S. Mansurov, T.P. Mansurova, E.V. Smirnova, L.S. Mikitin, A.V. Pershin. Human adaptation under influence of synergic system of factors (treatment of oncological patients after operation). Institute of Biophysics Russian Academy of Sciences, Preprint 212B Krasnoyarsk, 1995. [Google Scholar]
  30. R.N. Mantegna. Hierarchical structure in financial markets. The European Physical Journal B, 11, No. 1 (1999), 193–197. [Google Scholar]
  31. S.M. Markose. Computability and evolutionary complexity: markets as complex adaptive systems (CAS). Economic Journal, 115 (2005), F159–F192. Available online at SSRN: http://ssrn.com/abstract=745578 [CrossRef] [Google Scholar]
  32. R.N. Mantegna, H.E. Stanley. An introduction to econophysics: correlations and complexity in finance. Cambridge University Press, Cambridge, 1999. [Google Scholar]
  33. D. Matesanz, G.J. Ortega. Network analysis of exchange data: Interdependence drives crisis contagion, MPRA Paper No. 7720, posted 12 March 2008, Online at http://mpra.ub.uni-muenchen.de/7720/ [Google Scholar]
  34. R. McCarty, K. Pasak. Alarm phase and general adaptation syndrome. In: Encyclopedia of Stress, George Fink (ed.), Vol. 1, Academic Press, 2000, 126–130. [Google Scholar]
  35. I. Meric, G. Meric. Co-movements of European equity markets before and after the 1987 crash. Multinational Finance J., 1, No. 2 (1997), 137–152. [Google Scholar]
  36. E.P. Odum. Fundamentals of ecology (3d ed.). W. B. Saunders, Comp., Philadelphia 96 - London – Toronto, 1971. [Google Scholar]
  37. J. Oechssler, F. Riedel. On the dynamic foundation of evolutionary stability in continuous models. J. of Economic Theory, 107 (2002), 223–252. [CrossRef] [Google Scholar]
  38. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, A. Kanto. Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68 (2003), 056110. [Google Scholar]
  39. M.Y. Ozden. Law of the minimum in learning. Educational Technology & Society, 7 , No. 3 (2004), 5–8. [Google Scholar]
  40. Q. Paris. The return of von Liebig's “Law of the minimum". Agron. J., 84 (1992), 1040–1046 [Google Scholar]
  41. K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, No. 6 (1901), 559–572. [Google Scholar]
  42. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, T. Guhr, H.E. Stanley. Random matrix approach to cross correlations in financial data. Phys. Rev. E, 65 (2002), 066126. [CrossRef] [Google Scholar]
  43. L.I. Pokidysheva, R.A. Belousova, E.V. Smirnova. Method of adaptometry in the evaluation of gastric secretory function in children under conditions of the North. Vestn. Ross Akad Med Nauk, No. 5 (1996), 42–45. PMID: 8924826 [Google Scholar]
  44. L.D. Ponomarenko, E.V. Smirnova. Dynamical characteristics of blood system in mice with phenilhydrazin anemiya. Proceeding of 9th International Symposium “Reconstruction of homeostasis", Krasnoyarsk, Russia, March 15-20, 1998, vol. 1, 42–45. [Google Scholar]
  45. M. Potters, J.P. Bouchaud, L. Laloux. Financial applications of random matrix theory: old laces and new pieces. Acta Phys. Pol. B, 36, No. 9 (2005), 2767–2784. [Google Scholar]
  46. V.N. Razzhevaikin, M.I. Shpitonkov. Substantiation of correlation adaptometry based on evolutionary optimality principles. Computational Mathematics and Mathematical Physics, 43, No. 2 (2003), 296–307. [Google Scholar]
  47. R.T. Rockafellar. Convex analysis. Princeton University Press, Princeton, NJ, 1970. Reprint: 1997. [Google Scholar]
  48. F. Salisbury. Plant physiology (4th ed.). Wadsworth Belmont, CA, 1992. [Google Scholar]
  49. J.K. Schkade, S. Schultz. Occupational adaptation in perspectives. Ch. 7 in: Perspectives in Human Occupation: Participation in Life, By Paula Kramer, Jim Hinojosa, Charlotte Brasic Royeen (eds), Lippincott Williams & Wilkins, Baltimore, MD, 2003, 181–221. [Google Scholar]
  50. K.R. Sedov, A.N. Gorban', E.V. Petushkova (Smirnova), V.T. Manchuk, E.N. Shalamova. Correlation adaptometry as a method of screening of the population. Vestn. Akad Med Nauk SSSR, No. 10 (1988), 69–75. PMID: 3223045 [Google Scholar]
  51. H. Selye. Adaptation energy. Nature, 141 (3577) (21 May 1938), 926. [Google Scholar]
  52. H. Selye. Experimental evidence supporting the conception of “adaptation energy". Am. J. Physiol., 123 (1938), 758–765. [Google Scholar]
  53. A.M. Sengupta, P.P. Mitra. Distributions of singular values for some random matrices. Phys. Rev. E, 60 (1999), 3389–3392. [CrossRef] [Google Scholar]
  54. F.N. Semevsky, S.M. Semenov. Mathematical modeling of ecological processes. Gidrometeoizdat, Leningrad, 1982. [Google Scholar]
  55. P.G. Shumeiko, V.I. Osipov, G.B. Kofman. Early detection of industrial emission impact on Scots Pine needles by composition of phenolic compounds. In: Global & Regional Ecological Problems, R.G. Khlebopros (Ed.), Krasnoyarsk State Technical University Publ., 1994, 536–543. [Google Scholar]
  56. R. Smith. The spread of the credit crisis: view from a stock correlation network (February 23, 2009). Available online at SSRN: http://ssrn.com/abstract=1325803 [Google Scholar]
  57. S.O. Strygina, S.N. Dement'ev, V.M. Uskov, G.I. Chernyshova. Dynamics of the system of correlations between physiological parameters in patients after myocardial infarction. In: Mathematics, Computer, Education, Proceedings of Conference, Issue 7, Moscow, 2000, 685–689. [Google Scholar]
  58. G.N. Svetlichnaia, E.V. Smirnova, L.I. Pokidysheva. Correlational adaptometry as a method for evaluating cardiovascular and respiratory interaction. Fiziol. Cheloveka, 23, No. 3 (1997), 58–62. PMID: 9264951 [Google Scholar]
  59. A.V. Vasil'ev, G.Iu. Mal'tsev, Iu.V. Khrushcheva, V.N. Razzhevaikin, M.I. Shpitonkov. Applying method of correlation adaptometry for evaluating of treatment efficiency of obese patients. Vopr. Pitan., 76, No. 2 (2007), 36–38. PMID: 17561653 [Google Scholar]
  60. M.J. West-Eberhard. Developmental plasticity and evolution. Oxford University Press, US, 2003. [Google Scholar]
  61. E. Zuckerkandl, R. Villet. Concentration-affinity equivalence in gene regulation: convergence of genetic and environmental effects. PNAS USA, 85 (1988), 4784–4788. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.