Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 4, Number 6, 2009
Ecology (Part 1)
|
|
---|---|---|
Page(s) | 54 - 90 | |
DOI | https://doi.org/10.1051/mmnp/20094602 | |
Published online | 27 November 2009 |
- P.A. Abrams. Adaptive dynamics: Neither F nor G. Evol. Ecol. Res., 3 (2001), 369–373. [Google Scholar]
- P.A. Abrams, H. Matsuda. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol., 7 (1993), 465–487. [CrossRef] [Google Scholar]
- D. Alonso, F. Bartumeus, J. Catalan. Mutual interference between predators can give rise to Turing spatial patterns. Ecology, 83 (2002), 28–34. [CrossRef] [Google Scholar]
- H. Anton.and C. Rorres. Elementary linear algebra: applications version. 8th Edition. John Wiley & Sons, New York, 2000. [Google Scholar]
- J. Apaloo. Revisting strategic models of evolution: The concept of neighborhood invader strategies. Theor. Pop. Biol.,52 (1997), 71–77. [Google Scholar]
- N.F. Britton. Reaction-diffusion equations and their applications to biology. Academic Press, New York, 1986. [Google Scholar]
- J.S. Brown, N.B. Pavlovic. Evolution in heterogeneous environments - effects of migtation on habitat specialization. Evol. Ecol. 6 (1992),360–382. [Google Scholar]
- J.S. Brown, T.L. Vincent. A theory for the evolutionary game. Theor. Pop. Biol., 31 (1987), 140–166. [CrossRef] [Google Scholar]
- J.S. Brown, T.L. Vincent. Organiztion of predator-prey communities as an evolutionary game. Evolution, 46 (1992), 1269–1283. [CrossRef] [PubMed] [Google Scholar]
- R.G. Casten, C.J. Holland. Stability properties of solutions of systems of reaction-diffusion equations. SIAM J. Appl. Math. 33 (1977), 353–364. [Google Scholar]
- Y. Cohen, J. Pastor, T.L. Vincent. Evolutionary strategies and nutrient cycling in ecosystems. Evol. Ecol. Res., 2 (2000), 719–743. [Google Scholar]
- Y. Cohen, T.L. Vincent, J.S. Brown. A G-function approach to fitness minima, fitness maxima, evolutionarily stable strategies and adaptive landscapes. Evol. Ecol. Res., 1 (1999), 923–942. [Google Scholar]
- R. Cressman, G.T. Vickers. Spatial and density effects in evolutionary game theory. Math. Biol., 184 (1997), 359–369. [Google Scholar]
- U. Dieckmann, R. Law. The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol., 34 (1996), 579–612. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- R. Durrett, S. Levin. The importance of being discrete (and spatial). Theor. Pop. Biol., 46 (1994), 363–394. [Google Scholar]
- R. Durrett, S. Levin. Allelopathy in spatially distributed populations. J. Theor. Biol., 185 (1997), 165–171. [CrossRef] [PubMed] [Google Scholar]
- I. Eshel. Evolutionary and continuous stability. J. Theor. Biol. 108 (1983), 99–111. [Google Scholar]
- I. Eshel. On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34 (1996), 485–510. [Google Scholar]
- I. Eshel, U. Motro. Kin selection and strong evolutionary stability of mutual help. Theor. Pop. Biol. 19 (1981), 420–433. [Google Scholar]
- G. Gause. The struggle for existence. Williams and Wilkins, Baltimore, 1934. [Google Scholar]
- S.A.H. Geritz, M. Gyllenberg, F.J.A. Jacobs, K. Parvinen. Invasion dynamics and attractor inheritance. J. Math. Biol., 44 (2002), 548–560. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- S.A.H. Geritz, S.A.H. Kisdi, G. Meszéna, J.A.J. Metz. Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12 (1998), 35–57. [CrossRef] [Google Scholar]
- S.A.H. Geritz, J.A.J. Metz. É. Kisdi, G. Meszéna. Dynamics of adaptation and evolutionary branching. Physical Review Letters 78, 2024–2027. [Google Scholar]
- A. Gorban. Selection theorem for systems with inheritance. Math. Model. Nat. Phenom., 2 (2007), 1–45. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- P. Grindrod. The theory and applications of reaction-diffusion equations: patterns and waves. 2nd Edition. Clarendon press, Oxford, 1996. [Google Scholar]
- M. Gyllenberg, J.A. Metz. On fitness in structured metapopulations. J. Math. Biol., 43 (2001), 545–560. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- K.P. Hadeler. Diffusion in Fisher's population model. Rocky Mountain J. Math., 11 (1981), 39–45. [Google Scholar]
- J. Haldane. The causes of evolution. Princeton University Press, 1932. [Google Scholar]
- W.G.S. Hines. Evolutionary stable strategies: A review of basic theory. Theor. Pop. Biol., 31 (1987), 195–272. [CrossRef] [Google Scholar]
- V. C.L. Hutson, G.T. Vickers. Travelling waves and dominance of ESS's. J. Math. Biol., 30 (1992), 457–471. [CrossRef] [MathSciNet] [Google Scholar]
- N. Kalev-Kronik. Evolutionary games in space. Ph.D. Thesis, University of Minneosta, 2006. [Google Scholar]
- W. Kaplan. Advanced calculus. Addison-Wesley, Reading, 1952. [Google Scholar]
- C.L. Lehman, D. Tilman. Spatial Ecology : The Role of Space in Population Dynamics and Interspecific Interactions,chapter: Competition in Spatial Habitats.. Princeton University Press, Princeton, 1997. [Google Scholar]
- J.L. Lions. Equations differentielles operationelles. Springer-Verlag, New-York, 1961. [Google Scholar]
- S. Lipschutz. Linear algebra. McGraw-Hill, New York, 1991. [Google Scholar]
- J. Maynard-Smith. Evolution and the theory of games. Cambridge University Press, Cambridge, 1982. [Google Scholar]
- J. Maynard-Smith, G. Price. The logic of animal conflict. Nature, 246 (1973), 15–18. [CrossRef] [Google Scholar]
- J.A.J. Metz, M. Gyllenberg. How should we define fitness in structured metapopulation models?. Proc. Royal Soc. London B, 268 (2001), 499–508. [Google Scholar]
- J. Murray. Mathematical biology, 2nd Edition, Springer-Verlag, Berlin, 1993. [Google Scholar]
- C. Neuhauser. Habitat destruction and competitive coexistence in spatially explicit models with local interactions. J. Theor. Biol., 193 (1998), 445–463. [CrossRef] [PubMed] [Google Scholar]
- C. Neuhauser, S.W. Pacala. An explicit spatial version of the lotka-volterra model with interspecific competition. Ann. Appl. Probab., 9 (1999), 1226–1259. [CrossRef] [MathSciNet] [Google Scholar]
- H.G. Othmer, L.E. Scriven. Interactions of reaction and diffusion in open systems. Ind. Eng. Chem. Fund., 8 (1969), 302–313. [CrossRef] [Google Scholar]
- K. Parvinen. Evolution of migration in a metapopulation. Bul. Math. Biol., 61 (1999), 531–550. [CrossRef] [Google Scholar]
- H. Qian, J. Murray. A simple method of parameter space determination for diffusion-driven instability with three species. Appl. Math. Let., 9 (2001), 405–411. [CrossRef] [Google Scholar]
- A. Sasaki, I. Kawaguchi, A. Yoshimori. Spatial mosaic and interfacial dynamics in a Müllerian mimicry system. Theor. Pop. Biol., 61 (2002), 49–71. [CrossRef] [Google Scholar]
- L.E. Segel, J.L. Jackson. Dissipative structure: An explanation and an ecological example. J. Theor. Biol., 37 (1972), 545–559. [CrossRef] [PubMed] [Google Scholar]
- J. Smoller. Shock waves and reaction-diffusion equations. Springer-Verlag, New York, 1983. [Google Scholar]
- T. Takada, J. Kigami. The dynamical attainability of ESS in evolutionary games. J. Math. Biol., 29 (1991), 513–529. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- P.D. Taylor. Evolutionary stability in one-parameter models under weak selection. Theor. Pop. Biol., 36 (1989), 125–143. [CrossRef] [Google Scholar]
- D. Tilman, P. Kareiva eds. Spatial ecology : the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, 1997. [Google Scholar]
- A.M. Turing. On the chemical basis of morphogenesis. Phil. Trans. B., 237 (1952), 37–37. [Google Scholar]
- G.T. Vickers, Spatial patterns and ESS's. J. Theo. Biol., 140 (1989), 129–135. [Google Scholar]
- G.T. Vickers,V.C.L. Hutson, C.J. Budd. Spatial patterns in population conflicts. J. Math. Biol., 31 (1993), 411–430. [CrossRef] [MathSciNet] [Google Scholar]
- T. Vincent, Evolutionary games. J. Optim. Theor. Appl., 46 (1985), 605–612. [Google Scholar]
- T. Vincent, J. Brown. Evolution under nonequilibrium dynamics. Math. Model., 8 (1987), 766–771. [CrossRef] [Google Scholar]
- T.L. Vincent, J. Brown. Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge University Press, Cambridge, 2005. [Google Scholar]
- Vincent, T. Evolutionary stable strategies in differential and difference equation models. Evol. Ecol., 2, (1988), 321–337. [Google Scholar]
- T.L. Vincent, Y. Cohen, J.S. Brown. Evolution via strategy dynamics. Theor. Pop. Biol., 44 (1993), 149–176. [CrossRef] [Google Scholar]
- T.L. Vincent, M.V. Van, G.S. Goh. Ecological stability, evolutionary stability, and the ESS Maximum Principle. Evol. Ecol., 10 (1996), 567–591. [CrossRef] [Google Scholar]
- V. Zakharov, V.S. L'vov, S.S. Starobinets. Spin-wave turbulence beyond the parametric excitation threshold. Soviet Physics Uspekhii, 17 (1975), 896–919. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.