Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 6, 2009
Ecology (Part 1)
Page(s) 91 - 108
Published online 27 November 2009
  1. P. A. Abrams, H. Matsuda. Prey adaptation as a cause of predator-prey cycles. Evolution, 51 (1997),1742–1750. [Google Scholar]
  2. P. A. Abrams, C. J. Walters. Invulnerable prey and the paradox of enrichment. Ecology, 77 (1996), 1125–1133. [CrossRef] [Google Scholar]
  3. J. R. Beddington. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol., 44 (1975), 331–340. [Google Scholar]
  4. A. A. Berryman, B. A. Hawkins. The refuge as an integrating concept in ecology and evolution. Oikos, 115 (2006), No. 1, 192–196. [CrossRef] [Google Scholar]
  5. D. Bontje, B. W. Kooi, M. Liebig, S. A. L. M. Kooijman. Modelling long-term ecotoxicological effects on an algal population under dynamic nutrient stress. Water Research, 43 (2009), 3292–3300. [CrossRef] [PubMed] [Google Scholar]
  6. W. Brack, J. Bakker, E. de Deckere, C Deerenberg, J. van Gils, M Hein, P Jurajda, S. Kooijman, M. Lamoree, S. Lek, M.-J. López de Alda, A. Marcomini, I. Muñoz, S. Rattei, H. Segner, K. Thomas, P. von der Ohe, B. Westrich, D. de Zwart, M. Schmitt-Jansen. Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity. Environmental Science & Pollution Research, 12 (2005), No. 5, 252–256. [CrossRef] [Google Scholar]
  7. D. L. DeAngelis. Dynamics of Nutrient Cycling and Food Webs. Number 9 in Population and Community Biology series. Chapman & Hall, London (1992). [Google Scholar]
  8. D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill. A model for trophic interaction. Ecology, 56 (1975), 881–892. [Google Scholar]
  9. V. Grimm, C. Wissel. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109 (1997), 323–334. [CrossRef] [PubMed] [Google Scholar]
  10. T. Gross, W. Ebenhöh, U. Feudel. Enrichment and foodchain stability: the impact of different forms of predator-prey interaction. J. Theor. Biol., 227 (2004), 349–358. [CrossRef] [PubMed] [Google Scholar]
  11. V. A. A. Jansen. Regulation of predator-prey systems through spatial interactions: a possible solution to the paradox of enrichment. Oikos, 74 (1995), 384–390. [CrossRef] [Google Scholar]
  12. K. L. Kirk. Enrichment can stabilize population dynamics: autotoxins and density depencence. Ecology, 79 (1998), 2456–2462. [CrossRef] [Google Scholar]
  13. B. W. Kooi. Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment. Acta Biotheoretica, 51 (2003), No. 3, 189–222. [CrossRef] [PubMed] [Google Scholar]
  14. B. W. Kooi, J. C. Poggiale, P. Auger, S. A. L. M. Kooijman. Aggregation methods in food chains with nutrient recycling. Ecological Modelling, 157 (2002), No. 1, 69–86. [CrossRef] [Google Scholar]
  15. M. Kretzschmar, R. M. Nisbet, E McCauley. A predator–prey model for zooplankton grazing on competing algal populations. Theor. Popul. Biol., 44 (1993), 32–66. [CrossRef] [Google Scholar]
  16. M Kuwamura, T Nakazawa, T Ogawa. A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. Journal of Mathematical Biology, 58 (2009), No. 3, 459–479. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. M. Liebig, G. Schmidt, D. Bontje, B. W. Kooi, G. Streck, W. Traunspurger, T. Knacker. Direct and indirect effects of pollutants on algae and algivorous ciliates in an aquatic indoor microcosm. Aquatic Toxicology, 88 (2008), 102–110. [CrossRef] [Google Scholar]
  18. Maplesoft. Maple. Maplesoft, Waterloo, Ontario, Canada (2003). [Google Scholar]
  19. A. Mitra, K. J. Flynn. Importance of interactions between food quality, quantity, and gut transit time on consumer feeding, growth, and trophic dynamics. The American Naturalist, 169 (2007), No. 5, 632–646. [CrossRef] [PubMed] [Google Scholar]
  20. A. M. Mood, F. A. Graybill, D. C. Boes. Introduction to the Theory of Statistics. McGraw-Hill, Inc., New York, 3th edition (1974). [Google Scholar]
  21. H. Müller, A. Schlegel. Responses of three freshwater planktonic ciliates with different feeding modes to cryptophyte and diatom prey. Aquat. Microb. Ecol., 17 (1999), 49–60. [CrossRef] [Google Scholar]
  22. M. M. Mullin, E. F. Stewart, F. J. Fuglister. Ingestion by planktonic grazers as a function of concentration of food. Limnol. Oceanogr., 20 (1975), 259–262. [CrossRef] [Google Scholar]
  23. R. A. Park, J. S. Clough. Aquatox for windows: A modular fate and effects model for aquatic ecosystems. Technical Report 2, EPA (2004). [Google Scholar]
  24. R.A. Park, J. S. Clough, M. C. Wellman. Aquatox: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecological Modelling, 213 (2008), 1–15. [Google Scholar]
  25. S. Petrovskii, B–L Li, H. Malchow. Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex., 1 (2004), 37–47. [CrossRef] [Google Scholar]
  26. H. W. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, 2nd edition (1992). [Google Scholar]
  27. M. L. Rosenzweig, R. H. MacArthur. Graphical representation and stability conditions of predator-prey interactions. The American Naturalist, 97 (1963), 209–223. [Google Scholar]
  28. A. Saage, O. Vadstein, U. Sommer. Feeding behaviour of adult Centropages hamatus (Copepoda, Calanoida): Functional response and selective feeding experiments. Journal of Sea Research, 62 (2009), 16–21. [CrossRef] [Google Scholar]
  29. M. Scheffer, R. J. De Boer. Implications of spatial heterogeneity for the paradox of enrichment. Ecology, 76 (1995), 2270–2277. [CrossRef] [Google Scholar]
  30. S. L. Strom, C. B. Miller, B. W. Frost. What sets lower limits to phytoplankton stocks in high-nitrate, low-chlorophyll regions of the open ocean? Marine Ecology Progress Series, 193 (2000), 19–31. [CrossRef] [Google Scholar]
  31. G. A. K. Van Voorn, D. Stiefs, T. Gross, B. W. Kooi, U. Feudel, S. A. L. M. Kooijman. Stabilization due to predator interference: comparison of different analysis approaches. Mathematical Biosciences and Engineering, 5 (2008), No. 3,:567–583. [Google Scholar]
  32. M. Vos, B. W. Kooi, D. L. DeAngelis, W. M. Mooij. Inducible defences and the paradox of enrichment. Oikos, 105 (2004), 471–480. [CrossRef] [Google Scholar]
  33. T. Weisse, N. Karstens, V.C.L. Meyer, L. Janke, S. Lettner, K. Teichgräber. Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquatic Microbial Ecology, 26 (2001),167–179. [Google Scholar]
  34. T. Weisse, B Kirchhoff. Feeding of the heterotrophic freshwater dinoflagellate Peridiniopsis berolinense on cryptophytes: analysis by flow cytometry and electronic particle counting. Aquat. Microb. Ecol., 12 (1997), 153–164. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.