Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 6, 2009
Ecology (Part 1)
Page(s) 109 - 134
Published online 27 November 2009
  1. E. Beretta, Y. Kuang. Modeling and analysis of a marine bacteriophage infection. Math. Biosci., 149(1998), 57–76. [Google Scholar]
  2. B.J.M. Bohannan and R.E. Lenski. Effect of prey heterogeneity on the response of a model food chain to resource enrichment. The American Nat., 153(1999), 73–82. [Google Scholar]
  3. B.J.M. Bohannan and R.E. Lenski. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(2000), 362–377. [Google Scholar]
  4. B.J. Cairns, A.R. Timms, V.A.A. Jansen. I.F. Connerton, R.J.H. Payne, Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy. PLOS Pathogens, 5(2009), e1000253. [Google Scholar]
  5. A. Campbell. Conditions for existence of bacteriophages. Evolution, 15(1961), 153–165. [Google Scholar]
  6. M. Carletti. Mean-square stability of a stochastic model for bacteriophage infection with time delays. Mathematical Biosciences, 210(2007), 395-414. [Google Scholar]
  7. J. Carr. Applications of centre manifold theory. Springer-Verlag, New York, 1981. [Google Scholar]
  8. P. DeLeenheer and H.L. Smith. Virus dynamics: a global analysis. SIAM J. Appl. Math., 63(2003), 1313–1327. [Google Scholar]
  9. M. De Paepe and F. Taddei. Viruses' life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLOS Biol., 4(2006), 1248–1256. [Google Scholar]
  10. E. Ellis and M. Delbrück. The growth of bacteriophage. J. of Physiology, 22(1939), 365–384. [Google Scholar]
  11. D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81 (1977), No. 25, 2340–2361, 1977. [Google Scholar]
  12. Y. Cao, D. Gillespie, L. Petzold. The slow-scale stochastic simulation algorithm. J. Chem. Physics, 122 (2005), 014116. [CrossRef] [Google Scholar]
  13. P. Grayson, L. Han, T. Winther, R. Phillips. Real-time observations of single bacteriophage lambda DNA ejection in vitro. PNAS, 104 (2007), No. 37, 14652–57. [CrossRef] [Google Scholar]
  14. B. Levin, F. Stewart, L. Chao, Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage, Amer. Nat., 111 (1977), 3–24. [Google Scholar]
  15. R. Lenski and B. Levin. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities, Amer. Nat., 125 (1985), No. 4, 585–602. [Google Scholar]
  16. B. Levin, J. Bull. Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Amer. Nat., 147 (1996), 881–898. [CrossRef] [Google Scholar]
  17. B. Levin, J. Bull. Population and evolutionary dynamics of phage therapy. Nature Reviews Microbiology, 2 (2004), 166–173. [CrossRef] [PubMed] [Google Scholar]
  18. M. Kretzschmar and F. Adler. Aggregated distributions in models for patchy populations. Theor. Pop. Biol., 43 (1993), 1–30. [CrossRef] [Google Scholar]
  19. A.P. Krueger. The sorption of bacteriophage by living and dead susceptible bacteria: I. Equilibrium Conditions. J. Gen. Physiol., 14 (1931), 493–516. [CrossRef] [PubMed] [Google Scholar]
  20. S. Matsuzaki, M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi, S. Imai, Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother., 11(2005), 211–219. [Google Scholar]
  21. M.A. Nowak and R.M. May. Virus dynamics. Oxford University Press, New York, 2000. [Google Scholar]
  22. R. Payne, V. Jansen. Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol., 208 (2001), 37–48. [CrossRef] [PubMed] [Google Scholar]
  23. R. Payne and V. Jansen. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinetics, 42 (2003), No. 4, 315–325. [CrossRef] [Google Scholar]
  24. A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41 (1999), 3–44. [Google Scholar]
  25. H.L. Smith. Models of virulent phage growth with application to phage therapy. SIAM J. Appl. Math., 68 (2008), 1717–1737. [CrossRef] [MathSciNet] [Google Scholar]
  26. S.J. Schrag and J.E. Mittler. Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions. Amer. Nat., 148 (1996), 348–377. [CrossRef] [Google Scholar]
  27. G. Stent. Molecular biology of bacterial viruses. W.H. Freeman and Co., London, 1963. [Google Scholar]
  28. H. R. Thieme. Persistence under relaxed point-dissipativity (with applications to an endemic model). SIAM J. Math. Anal., 24 (1993), 407–435. [CrossRef] [MathSciNet] [Google Scholar]
  29. H.R. Thieme and J. Yang. On the Complex formation approach in modeling predator prey relations, mating, and sexual disease transmission. Elect. J. Diff. Eqns., 05 (2000), 255–283. [Google Scholar]
  30. R. Weld, C. Butts, J. Heinemann. Models of phage growth and their applicability to phage therapy. J. Theor. Biol., 227 (2004), 1–11. [CrossRef] [PubMed] [Google Scholar]
  31. X.-Q. Zhao. Dynamical systems in population biology. CMS Books in Mathematics, Springer, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.