Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 6, 2009
Ecology (Part 1)
Page(s) 109 - 134
Published online 27 November 2009
  1. E. Beretta, Y. Kuang. Modeling and analysis of a marine bacteriophage infection. Math. Biosci., 149(1998), 57–76.
  2. B.J.M. Bohannan and R.E. Lenski. Effect of prey heterogeneity on the response of a model food chain to resource enrichment. The American Nat., 153(1999), 73–82.
  3. B.J.M. Bohannan and R.E. Lenski. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(2000), 362–377.
  4. B.J. Cairns, A.R. Timms, V.A.A. Jansen. I.F. Connerton, R.J.H. Payne, Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy. PLOS Pathogens, 5(2009), e1000253.
  5. A. Campbell. Conditions for existence of bacteriophages. Evolution, 15(1961), 153–165.
  6. M. Carletti. Mean-square stability of a stochastic model for bacteriophage infection with time delays. Mathematical Biosciences, 210(2007), 395-414.
  7. J. Carr. Applications of centre manifold theory. Springer-Verlag, New York, 1981.
  8. P. DeLeenheer and H.L. Smith. Virus dynamics: a global analysis. SIAM J. Appl. Math., 63(2003), 1313–1327.
  9. M. De Paepe and F. Taddei. Viruses' life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLOS Biol., 4(2006), 1248–1256.
  10. E. Ellis and M. Delbrück. The growth of bacteriophage. J. of Physiology, 22(1939), 365–384.
  11. D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81 (1977), No. 25, 2340–2361, 1977.
  12. Y. Cao, D. Gillespie, L. Petzold. The slow-scale stochastic simulation algorithm. J. Chem. Physics, 122 (2005), 014116. [CrossRef]
  13. P. Grayson, L. Han, T. Winther, R. Phillips. Real-time observations of single bacteriophage lambda DNA ejection in vitro. PNAS, 104 (2007), No. 37, 14652–57. [CrossRef]
  14. B. Levin, F. Stewart, L. Chao, Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage, Amer. Nat., 111 (1977), 3–24.
  15. R. Lenski and B. Levin. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities, Amer. Nat., 125 (1985), No. 4, 585–602.
  16. B. Levin, J. Bull. Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Amer. Nat., 147 (1996), 881–898. [CrossRef]
  17. B. Levin, J. Bull. Population and evolutionary dynamics of phage therapy. Nature Reviews Microbiology, 2 (2004), 166–173. [CrossRef] [PubMed]
  18. M. Kretzschmar and F. Adler. Aggregated distributions in models for patchy populations. Theor. Pop. Biol., 43 (1993), 1–30. [CrossRef]
  19. A.P. Krueger. The sorption of bacteriophage by living and dead susceptible bacteria: I. Equilibrium Conditions. J. Gen. Physiol., 14 (1931), 493–516. [CrossRef] [PubMed]
  20. S. Matsuzaki, M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi, S. Imai, Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother., 11(2005), 211–219.
  21. M.A. Nowak and R.M. May. Virus dynamics. Oxford University Press, New York, 2000.
  22. R. Payne, V. Jansen. Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol., 208 (2001), 37–48. [CrossRef] [PubMed]
  23. R. Payne and V. Jansen. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinetics, 42 (2003), No. 4, 315–325. [CrossRef]
  24. A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41 (1999), 3–44.
  25. H.L. Smith. Models of virulent phage growth with application to phage therapy. SIAM J. Appl. Math., 68 (2008), 1717–1737. [CrossRef] [MathSciNet]
  26. S.J. Schrag and J.E. Mittler. Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions. Amer. Nat., 148 (1996), 348–377. [CrossRef]
  27. G. Stent. Molecular biology of bacterial viruses. W.H. Freeman and Co., London, 1963.
  28. H. R. Thieme. Persistence under relaxed point-dissipativity (with applications to an endemic model). SIAM J. Math. Anal., 24 (1993), 407–435. [CrossRef] [MathSciNet]
  29. H.R. Thieme and J. Yang. On the Complex formation approach in modeling predator prey relations, mating, and sexual disease transmission. Elect. J. Diff. Eqns., 05 (2000), 255–283.
  30. R. Weld, C. Butts, J. Heinemann. Models of phage growth and their applicability to phage therapy. J. Theor. Biol., 227 (2004), 1–11. [CrossRef] [PubMed]
  31. X.-Q. Zhao. Dynamical systems in population biology. CMS Books in Mathematics, Springer, 2003.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.