Free Access
Math. Model. Nat. Phenom.
Volume 4, Number 6, 2009
Ecology (Part 1)
Page(s) 135 - 155
Published online 27 November 2009
  1. K. G. Ashton. Body size variation among mainland populations of the western rattlesnake (Crotalus viridis). Evolution, (2001), 55(12):2523–2533. [Google Scholar]
  2. M. S. Boyce. Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia, 36 (1978), 1–19. [CrossRef] [PubMed] [Google Scholar]
  3. M. S. Boyce. Seasonality and patterns of natural selection for life histories. The American Naturalist, 114 (1979), No. 4, 569–583. [CrossRef] [Google Scholar]
  4. S. L. Chown, C. J. Klok. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 26 (2003), No. 4, 445–455. [CrossRef] [Google Scholar]
  5. D. Cohen, H. Parnas. An optimal policy for the metabolism of storage materials in unicellular algae. J. theor. Biol., 56 (1976), 1–18. [CrossRef] [PubMed] [Google Scholar]
  6. C. R. Dickman, P. S. Mahon, P. Masters, D. F Gibson. Long-term dynamics of rodent populations in arid australia: the influence of rainfall. Wildlife Research, 26 (1999), No. 4, 389–403. [CrossRef] [Google Scholar]
  7. U. Dieckmann. Can adaptive dynamics invade? Trends in Ecology and Evolution, 12 (1997), 128–131. [CrossRef] [Google Scholar]
  8. U. Dieckmann, R. Law. The mathematical theory of coevolution: a derivation from stochastic processes. J. Math. Biol., 34 (1996), 579–612. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. R. L. Dunsbrack, M. A. Ramsay. The allometry of mammalian adaptations to seasonal environments - a critique of the fasting endurance hypothesis. OIKOS, 66 (1993), No. 2, 336–342. [CrossRef] [Google Scholar]
  10. S. H. Ferguson. The effects of productivity and seasonality on life history: comparing age at maturity among moose (Alces alces) populations. Global Ecology and Biogeography, 11 (2002), No. 4, 303–312. [CrossRef] [Google Scholar]
  11. N. R. French, D. M. Stoddart, B. Bobek. Patterns of demography in small mammal populations. In F. B. Golley, K. Petrusewicz, and L. Ryszkowski, editors, Small mammals: their productivity and population dynamics, pages 73–102. Cambridge University Press, Cambridge, 1975. [Google Scholar]
  12. S. A. H. Geritz, É. Kisdi, G. Meszéna, J. A. J. Metz. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology, 12 (1998), 35–57. [Google Scholar]
  13. S. A. H. Geritz, J. A. J. Metz, É. Kisdi, G. Meszéna. Dynamics of adaptation and evolutionary branching. Physical Review Letters, 78 (1997), 2024–2027. [CrossRef] [Google Scholar]
  14. S. A. H. Geritz, E. van der Meijden, J. A. J. Metz. Evolutionary dynamics of seed size and seedling competitive ability. Theoretical Population Biology, 55 (1999), 324–343. [CrossRef] [PubMed] [Google Scholar]
  15. J. D. Hays, J. Imbrie, N. J. Shackleton. Variations in the earth's orbit: Pacemaker of the ice ages. Science, 194 (1976), 1121–1132. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  16. F. J. Hilgen, W. Krijgsman, C. G. Langereis, Lourens L. J., Santarelli A., W. J. Zachariasse. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett., 136 (1995), No. 3, 496–510. [Google Scholar]
  17. K. L. Kirk. Life-history responses to variable environments: starvation and reproduction in planctonic rotifers. Ecology, (1997), 78(2):434–441. [Google Scholar]
  18. B. W. Kooi, S. A. L. M. Kooijman. Population dynamics of rotifers in chemostats. Nonlinear Analysis, Theory, Methods & Applications, 30 (1997), No. 3, 1687–1698. [Google Scholar]
  19. B. W. Kooi, S. A. L. M. Kooijman. Discrete event versus continuous approach to reproduction in structured population dynamics. Theoretical Population Biology, 56 (1999), No. 1, 91–105. [CrossRef] [PubMed] [Google Scholar]
  20. B. W. Kooi, T. A. Troost. Advantages of storage in a fluctuating environment. Theoretical Population Biology, 70 (2006), No. 4, 527–541. [CrossRef] [PubMed] [Google Scholar]
  21. S. A. L. M. Kooijman. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 2000. [Google Scholar]
  22. J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. C. M. Correia, B. Levrard. A long-term numerical solution for the insolation quantities of the earth. Astronomy & Astrophysics, 428 (2004), 261–285. [CrossRef] [EDP Sciences] [Google Scholar]
  23. S. M. Lehman, M. Mayor, P. C. Wright. Ecogeographic size variations in sifakas: a test of the resource seasonality and resource quality hypotheses. American Journal of Physical Anthropology, 126 (2005), No. 3, 318–328. [CrossRef] [PubMed] [Google Scholar]
  24. H. Lieth. Primary production: terrestrial ecosystems. Human Ecology, 1 (1973), 303–332. [CrossRef] [Google Scholar]
  25. M. Lima, J. E. Keymer, F. M. Jaksic. El Niño-Southern oscillation-driven rainfall variability and delayed density dependence cause rodent outbreaks in Western South America: linking demography and population dynamics. The American Naturalist, 153 (1999), No. 15, 476–491. [CrossRef] [PubMed] [Google Scholar]
  26. C. C. Lindsey. Body sizes of poikilotherm vertebrates at different latitudes. Evolution, 20 (1966), 456–465. [CrossRef] [PubMed] [Google Scholar]
  27. S. L. Lindstedt, M. S. Boyce. Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125 (1985), 873–878. [CrossRef] [Google Scholar]
  28. T. Madson, R. Shine. Rainfall and rats: climatically-driven dynamics of a tropical rodent population. Austral Ecology, 24 (1999), No. 1, 80–89. [CrossRef] [Google Scholar]
  29. S. Meiri, T. Dayan, D. Simberloff. Biogeographical patterns in the Western Palearctic: the fasting-endurance hypothesis and the status of Murphy's rule. Journal of Biogeography, 32 (2005), 369–375. [CrossRef] [Google Scholar]
  30. J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: S. J. van Strien, S. M. Verduyn Lunel, editors, Stochastic and spatial structures of dynamical systems, pages 183–231. North-Holland, Amsterdam, 1996. [Google Scholar]
  31. J. A. J. Metz, S. A. H. Geritz, R. M. Nisbet. How should we define 'fitness' for general ecological scenarios? Trends in Ecology & Evolution, 7 (1992), 198–202. [CrossRef] [PubMed] [Google Scholar]
  32. Milankovitch. Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Spec. Publ., 133 (1941), 1–633. [Google Scholar]
  33. E. B. Muller, R. M. Nisbet. Survival and production in variable resource environments. Bulletin of Mathematical Biology, 62 (2000), 1163–1189. [CrossRef] [PubMed] [Google Scholar]
  34. P. E. Olsen, D. V. Kent. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behavior of the planets. Phil. Trans. R. Soc. Lond. (A), 357 (1999), 1761–1784. [Google Scholar]
  35. H. Parnas, D. Cohen. The optimal strategy for the metabolism of reserve materials in micro-organisms. J. theor. Biol., 56 (1976), No. 1, 19–55. [CrossRef] [PubMed] [Google Scholar]
  36. R. H. Peters. The Ecological Implications of Body Size. Cambridge University Press, New York, 1983. [Google Scholar]
  37. M. Predavec. Population-dynamics and environmental changes during natural irruptions of Australian desert rodents. Wildlife Research, 21 (1994), No. 5, 569–582. [CrossRef] [Google Scholar]
  38. K. W. Shertzer, S. P. Ellner. Energy storage and the evolution of population dynamics. J. theor. Biol., 215 (2002), 183–200. [CrossRef] [PubMed] [Google Scholar]
  39. F. A. Smith, J. L. Betancourt, J. H. Brown. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science, 270 (1995), 2012–2014. [CrossRef] [Google Scholar]
  40. N. C. Stenseth, H. Leirs, A. Skonhoft, S. A. Davis, R. P. Pech, H. P. Andreassen, G. R. Singleton, M. Lima, R. S. Machang'u, R. H. Makundi, Z. B. Zhang, P. R. Brown, D. Z. Shi, X. R. Wan. Mice, rats and people: the bio-economics of agricultural rodent pests. Frontiers in Ecology and the Environment, 1 (2003), No. 7, 367–375. [Google Scholar]
  41. T. A. Troost, B. W. Kooi, U. Dieckmann. Joint evolution of predator body size and prey-size preference. Evolutionary Ecology, 22 (2008), 771–799. [Google Scholar]
  42. T. A. Troost, B. W. Kooi, S. A. L. M. Kooijman. Bifurcation analysis of ecological and evolutionary processes in ecosystems. Ecological Modelling, 204 (2007), No. 1/2, 253–268. [Google Scholar]
  43. I. M. M. van Leeuwen, F. D. L. Kelpin, S. A. L. M. Kooijman. A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontology, 3 (2002), No. 6, 373–381. [CrossRef] [PubMed] [Google Scholar]
  44. J. D. Wigginton, F. S. Dobson. Environmental influences on geographic variation in body size of western bobcats. Canadian Journal of Zoology, 77 (1999), No. 5, 802–813. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.