Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 123 - 147
DOI https://doi.org/10.1051/mmnp/20105106
Published online 03 February 2010
  1. R. A. Adams. Sobolev spaces. Academic Press, New York, 1975. [Google Scholar]
  2. M. Alber, R. GejjiB. Kaźmierczak. Existence of global solutions of a macroscopic model of cellular motion in a chemotactic field. Applied Mathematics Letters., 22 (2009), No. 11, 1645–1648 [Google Scholar]
  3. B. Ainsebaa, M. Bendahmaneb, A. Noussairc. A reaction–diffusion system modeling predator–prey with prey-taxis. Nonlinear Anal. R. World Appl., 9 (2008), No. 5, 2086–2105. [Google Scholar]
  4. H. Amann. Dynamic theory of quasilinear parabolic systems III. Global existence. Math. Z., 202 (1989), No. 2, 219–250. [Google Scholar]
  5. H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.9–126, in: (H. Triebel, H.J. Schmeisser., eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte Math., 133, Teubner, Stuttgart, 1993. [Google Scholar]
  6. D. G. Aronson. The porous medium equation., in: (A.Fasano, M.Primicerio.,eds.) Some Problems in Nonlinear Diffusion. Lecture Notes in Mathematics., 1224, Springer, Berlin, 1986. [Google Scholar]
  7. M. Bendahmane, K. H. Karlsen, J. M. Urbano. On a two-sidedly degenerate chemotaxis model with volume-filling effect. Math. Models Methods Appl. Sci., 17 (2007), No. 2, 783–804. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Biler. Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. Nachr., 195 (1998), No. 8, 76–114 [Google Scholar]
  9. M. P. Brenner, L. S. Levitov and E. O. Budrene. Physical mechanism for chemotactic pattern formation by bacteria. Biophys. J., 74 (1998), No. 4, 1677–1693. [CrossRef] [PubMed] [Google Scholar]
  10. H. M. ByrneM. R. Owen. A new interpretation of the Keller-Segel model based on multiphase modelling. J. Math. Biol., 49 (2004), No. 6, 604–626 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. F. A. C. C. ChalubJ. F. Rodrigues. A class of kinetic models for chemotaxis with threshold to prevent overcrowding. Portugaliae Math., 26 (2006), No. 2, 227–250 [Google Scholar]
  12. V. CalvezJ. A. Carillo. Volume effects in the KellerSegel model: energy estimates preventing blow-up. J. Math. Pures Appl., 86 (2006), No. 2, 155–175 [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Cieślak . The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below. 127–132, in: Self-similar solutions of nonlinear PDE, Banach Center Publ., 74, Warsaw, 2006. [Google Scholar]
  14. T. Cieślak. Quasilinear nonuniformly parabolic system modelling chemotaxis. J. Math. Anal. Appl., 326 (2007), No. 2, 1410–1426 [CrossRef] [MathSciNet] [Google Scholar]
  15. T. CieślakC. Morales-Rodrigo. Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions. Topol. Methods Nonlinear Anal., 29 (2007), No. 2, 361–381 [MathSciNet] [Google Scholar]
  16. T. CieślakM. Winkler. Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity., 21 (2008), No. 5, 1057–1076 [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. S. ChoiZ. A. Wang. Prevention of blow up by fast diffusion in chemotaxis. J. Math. Anal. Appl., 362 (2010), No. 2, 553-564 [CrossRef] [MathSciNet] [Google Scholar]
  18. M. DiFrancescoJ. Rosado. Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding. Nonlinearity., 21 (2008), No. 11, 2715–2730 [CrossRef] [MathSciNet] [Google Scholar]
  19. Y. DolakC. Schmeiser. The Keller-Segel model with logistic sensitivity function and small diffusivity. SIAM J. Appl. Math., 66 (2005), No. 1 Cell migration, 286–308 [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Feireisl, Ph. LaurençotH. Petzeltova. On convergence to equilibria for the Keller-Segel chemotaxis model. J.Diff.Equations., 236 (2007), No. 2, 551–569 [CrossRef] [Google Scholar]
  21. H. GajewskiK. Zacharias. Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr., 195 (1998), No. 1 Cell migration, 77–114 [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981. [Google Scholar]
  23. M. A. HerreroJ. J. L Velázquez. A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa., 24 (1997), No. 4, 633–683 [Google Scholar]
  24. M. A. HerreroJ. J. L Velázquez. Chemotactic collapse for the Keller-Segel model. J. Math. Biol., 35 (1996), No. 2, 583–623 [Google Scholar]
  25. T. HillenK. J. Painter. A user’s guide to PDE models for chemotaxis. J. Math. Biol., 58 (2009), No. 1–2, 183–217 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. T. HillenK. Painter. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math., 26 (2001), No. 4, 280–301 [Google Scholar]
  27. D. Horstmann. Lyapunov functions and Lp;-estimates for a class of reaction-diffusion systems. Colloq. Math., 87 (2001), No. 1 Cell migration, 113–127 [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein., 105 (2003), No. 3, 103–165 [MathSciNet] [Google Scholar]
  29. D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein., 106 (2004), No. 2, 51–69 [Google Scholar]
  30. J. JiangY. Zhang. On Convergence to equilibria for a Chemotaxis Model with Volume filling effect. Asymptotic Analysis., 65 (2009), No. 1–2, 79–102 [MathSciNet] [Google Scholar]
  31. E. Keller and L. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biology. 26 (1970), No. 3, 399–415. [Google Scholar]
  32. R. Kowalczyk, A. Gamba and L. Preciosi. On the stability of homogeneous solutions to some aggregation models. Discrete Contin. Dynam. Systems-Series B. 4 (2004), No. 1 Cell migration, 204–220. [Google Scholar]
  33. Ph. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. 273-290 in: Progress in Nonlinear Differential Equations and Their Applications., 64, Birkhäuser, Basel, 2005. [Google Scholar]
  34. J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969. [Google Scholar]
  35. P. M. Lushnikov, N. Chen and M. Alber. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E., 78 (2008), No. 6, 061904. [CrossRef] [Google Scholar]
  36. T. Nagai. Blow-up of radially symetric solutions to a chemotaxis system. Adv. Math. Sci. Appl., 5 (1995), No. 2, 581–601 [MathSciNet] [Google Scholar]
  37. T. Nagai, T. SenbaT. Suzuki. Chemotaxis collapse in a parabolic system of mathematical biology. Hiroshima Math. J., 30 (2000), No. 3, 463–497 [MathSciNet] [Google Scholar]
  38. K. OsakiA. Yagi. Finite dimensional attractors for one dimensional Keller-Segel equations. Funkcial. Ekvac., 44 (2001), No. 3, 441–469 [MathSciNet] [Google Scholar]
  39. K. Osaki, A. Yagi. Global existence for a chemotaxis-growth system in ℝ2. Adv. Math. Sci. Appl., 12 (2002), No. 2, 587–606. [MathSciNet] [Google Scholar]
  40. K. Osaki, T. Tsujikawa, A. YagiM. Mimura. Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal., 51 (2002), No. 1 Cell migration, 119–144 [CrossRef] [MathSciNet] [Google Scholar]
  41. K. PainterT. Hillen Volume-filling and quorum-sensing in models for chemosensitive movement. Canadian Appl. Math. Q., 10 (2002), No. 4, 501–543 [Google Scholar]
  42. C. S. Patlak. Random walk with persistence and external bias. Bull. Math. Biol. Biophys., 15 (1953), No. 3, 311–338 [Google Scholar]
  43. B. PerthameA. -L. Dalibard. Existence of solutions of the hyperbolic Keller-Segel model. Trans. Amer. Math. Soc., 361 (2008), No. 5, 2319–2335 [Google Scholar]
  44. A. B. PotapovT. Hillen. Metastability in Chemotaxis Models. J. Dyn. Diff. Eq., 17 (2005), No. 2, 293-330 [CrossRef] [Google Scholar]
  45. R. Schaaf. Stationary solutions of Chemotaxis systems. Trans. Am. Math. Soc., 292 (1985), No. 2, 531-556 [CrossRef] [Google Scholar]
  46. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer- Verlag, New York, 1988. [Google Scholar]
  47. J. J. L Velázquez. Point dynamics in a singular limit of the Keller-Segel model 1: motion of the concentration regions. SIAM J. Appl. Math., 64 (2004), No. 4, 1198–1223 [CrossRef] [MathSciNet] [Google Scholar]
  48. M. Winkler. Does a volume filling effect always prevent chemotactic colapse. Math. Meth. Appl. Sci., 33 (2010), No. 1 Cell migration, 12–24 [Google Scholar]
  49. Z.A. WangT. Hillen. Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos., 17 (2007), No. 3, 037108–037121 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. D. Wrzosek. Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Anal. TMA., 59 (2004), No. 8, 1293–1310 [Google Scholar]
  51. D. Wrzosek. Long time behaviour of solutions to a chemotaxis model with volume filling effect. Proc. Roy. Soc. Edinburgh., 136A (2006), No. 2, 431–444 [CrossRef] [Google Scholar]
  52. D. Wrzosek. Chemotaxis models with a threshold cell density. in: Parabolic and Navier-Stokes equations. Part 2, 553–566, Banach Center Publ., 81, Warsaw, 2008. [Google Scholar]
  53. D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA.. to appear. [Google Scholar]
  54. Y. Zhang, S. Zheng. Asymptotic Behavior of Solutions to a Quasilinear Nonuniform Parabolic System Modelling Chemotaxis. J. Diff. Equations. in press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.