Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 106 - 122
Published online 03 February 2010
  1. M. Alber, N. Chen, T. Glimm, P. M. Lushnikov. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 73 (2006), No. 5/1, 051901. [CrossRef] [MathSciNet] [PubMed]
  2. A. L. Bauer, T. L. JacksonY. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92 (2007), No. 9, 3105–3121 [CrossRef] [PubMed]
  3. A. L. Bauer, T. L. Jackson, Y. Jiang. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLOS Comp. Biol., (in press), 2009.
  4. J. M. Belmonte, G. L. Thomas, L. G. Brunnet, R. M. C. de Almeida, H. Chaté. Self-propelled particle model for cell-sorting phenomena. Phys. Rev. Lett., 100 (2008), No. 24, 248702. [CrossRef] [PubMed]
  5. D. A. Beysens, G. ForgacsJ. A. Glazier. Cell sorting is analogous to phase ordering in fluids. PNAS, 97 (2000), 9467–71 [CrossRef]
  6. A. Czirók, E. A. Zamir, A. SzabóC. D. Little. Multicellular sprouting during vasculogenesis. Curr. Top. Dev. Biol., 81 (2008), 269–289 [CrossRef] [PubMed]
  7. A. T. DawesL. Edelstein-Keshet. Phosphoinositides and rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys. J., 92 (2007), No. 3, 744–768 [CrossRef] [PubMed]
  8. P. G. de Gennes, F. Brochard-Wyart, D. Quere. Capillarity and wetting phenomena. Springer, New York, 2003.
  9. A. Dipasquale. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp. Cell Res., 95 (1975), No. 2, 425–439 [CrossRef] [PubMed]
  10. O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. SilberzanB. Ladoux. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U S A, 102 (2005), No. 7, 2390–2395 [CrossRef] [PubMed]
  11. G. Forgacs, R. A. Foty, Y. ShafrirM. S. Steinberg. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J., 74 (1998), No. 5, 2227–2234 [CrossRef] [PubMed]
  12. R. A. Foty, C. M. Pfleger, G. ForgacsM. S. Steinberg. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 122 (1996), No. 5, 1611–1620 [PubMed]
  13. R. A. FotyM. S. Steinberg. The differential adhesion hypothesis: a direct evaluation. Dev. Biol., 278 (2005), No. 1 Cell migration, 255–263 [CrossRef] [PubMed]
  14. P. Friedl. Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol., 122 (2004), 183–90 [CrossRef] [PubMed]
  15. P. FriedlK. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res., 68 (2008), No. 18, 7247–7249 [CrossRef] [PubMed]
  16. A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino. Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90 (2003), No. 11, 118101. [CrossRef] [PubMed]
  17. H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. ShimaC. Betsholtz. Vegf guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161 (2003), No. 6, 1163–1177 [CrossRef] [PubMed]
  18. J. A. GlazierF. Graner. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), No. 3, 2128–2154 [CrossRef] [PubMed]
  19. F. GranerJ. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett., 69 (1992), No. 13, 2013–2016 [CrossRef] [PubMed]
  20. D. S. Gray, J. TienC. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned young’s modulus. J. Biomed. Mater. Res. A., 66 (2003), 605–14 [CrossRef] [PubMed]
  21. B. Hegedüs, F. Marga, K. Jakab, K. L. Sharpe-TimmsG. Forgacs. The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. Biophysical J., 91 (2006), No. 7, 2708–16 [CrossRef] [PubMed]
  22. K. A. HoganV. L. Bautch. Blood vessel patterning at the embryonic midline. Curr. Top. Dev. Biol., 62 (2004), 55–85 [CrossRef] [PubMed]
  23. M. S. Hutson, G. W. Brodland, J. Yang, D. Viens. Cell sorting in three dimensions: topology, fluctuations, and fluidlike instabilities. Phys. Rev. Lett., 101 (2008), No. 14, 148105. [CrossRef] [PubMed]
  24. J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G. Thomas, G. Forgacs, M. Alber, G. Hentschel, S. A. Newman, J. A. Glazier. Compucell, a multi-model framework for simulation of morphogenesis. Bioinformatics, 20 (2004), No. 7, 1129–1137. [CrossRef] [PubMed]
  25. G. Jiang, A. H. Huang, Y. Cai, M. TanaseM. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and rptpalpha. Biophys J., 90 (2006), 1804–9 [CrossRef] [PubMed]
  26. S. KidoakiT. Matsuda. Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy. J. Biomed. Mater. Res. A., 81 (2007), No. 4, 803–810 [PubMed]
  27. T. Libotte, H. W. Kaiser, W. Alt, T. Bretschneider. Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration. Exp. Cell Res., 270 (2001), No 2, 129–137. [CrossRef] [PubMed]
  28. C. M. Lo, H. B. Wang, M. DemboY. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys J., 79 (2000), No. 1 Cell migration, 144–152 [CrossRef] [PubMed]
  29. D. Manoussaki, S. R. Lubkin, R. B. VernonJ. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor, 44 (1996), No. 3-4, 271–282 [CrossRef] [PubMed]
  30. R. M. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. NewmanJ. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289 (2006), 44–54 [CrossRef] [PubMed]
  31. R. M. H. Merks, E. D. Perryn, A. Shirinifard, J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol., 4 (2008), No. 9, e1000163. [CrossRef] [PubMed]
  32. D. J. Montell. Morphogenetic cell movements: diversity from modular mechanical properties. Science, 322 (2008), No. 5907, 1502–1505 [CrossRef] [PubMed]
  33. J. D. Murray. Mathematical Biology. Springer Verlag, Berlin, 2nd edition, 2003.
  34. J. D. Murray, D. Manoussaki, S. R. Lubkin, R. Vernon. A mechanical theory of in vitro vascular network formation. In C. D. Little, V Mironov, and E. H. Sage, editors, Vascular morphogenesis: In vivo, in vitro, in mente., pages 223–239. Birkhauser, Boston, 1998.
  35. T. J. Newman. Modeling multicellular systems using subcellular elements. Math. Biosci. Eng., 2 (2005), 611–622
  36. E. D. Perryn, A. CzirókC. D. Little. Vascular sprout formation entails tissue deformations and ve-cadherin-dependent cell-autonomous motility. Dev. Biol., 313 (2008), 545–55 [CrossRef] [PubMed]
  37. A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. ParsonsA. R. Horwitz. Cell migration: integrating signals from front to back. Science, 302 (2003), No. 5651, 1704–1709 [CrossRef] [PubMed]
  38. J. P. Rieu, A. Upadhyaya, J. A. Glazier, N. B. OuchiY. Sawada. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys J., 79 (2000), 1903–14 [CrossRef] [PubMed]
  39. P. A. Rupp, A. CzirókC. D. Little. alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. Development, 131 (2004), No. 12, 2887–97 [CrossRef] [PubMed]
  40. R. K. SawhneyJ. Howard. Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J. Cell Biol., 157 (2002), No. 6, 1083–1091 [CrossRef] [PubMed]
  41. D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. LarsenH. Flyvbjerg. Cell motility as persistent random motion: theories from experiments. Biophys J., 89 (2005), 912–31 [CrossRef] [PubMed]
  42. G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. PreziosiF. Bussolino. Modeling the early stages of vascular network assembly. EMBO J., 22 (2003), 1771–9 [CrossRef] [PubMed]
  43. C. L. Stokes, D. A. LauffenburgerS. K. Williams. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci., 99 (1991), 419–30 [PubMed]
  44. A. Szabó, R. Ünnep, E. Méhes, W. Twal, S. Argraves, Y. Cho, A. Czirók. Collective cell motion in endothelial monolayers. (preprint)
  45. A. Szabó, E. Méhes, E. KósaA. Czirók. Multicellular sprouting in vitro. Biophys J., 95 (2008), No. 6, 2702–2710 [CrossRef] [PubMed]
  46. A. Szabó, E. D. Perryn, A. Czirók. Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett., 98 (2007), No. 3, 038102. [CrossRef] [PubMed]
  47. J. M. TeddyP. M. Kulesa. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development, 131 (2004), No. 24, 6141–6151 [CrossRef] [PubMed]
  48. E. Tzima, M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisserM. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437 (2005), No. 7057, 426–431 [CrossRef] [PubMed]
  49. A. Upadhyaya, J.-P. Rieu, J. A. GlazierY. Sawada. Anomalous diffusion and non-gaussian velocity distribution of hydra cells in cellular aggregates. Physica A, 293 (2001), 549–558 [CrossRef]
  50. A. B. Verkhovsky, T. M. SvitkinaG. G. Borisy. Self-polarization and directional motility of cytoplasm. Curr. Biol., 9 (1999), No. 1 Cell migration, 11–20 [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.