Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 106 - 122
Published online 03 February 2010
  1. M. Alber, N. Chen, T. Glimm, P. M. Lushnikov. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 73 (2006), No. 5/1, 051901. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. A. L. Bauer, T. L. JacksonY. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92 (2007), No. 9, 3105–3121 [CrossRef] [PubMed] [Google Scholar]
  3. A. L. Bauer, T. L. Jackson, Y. Jiang. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLOS Comp. Biol., (in press), 2009. [Google Scholar]
  4. J. M. Belmonte, G. L. Thomas, L. G. Brunnet, R. M. C. de Almeida, H. Chaté. Self-propelled particle model for cell-sorting phenomena. Phys. Rev. Lett., 100 (2008), No. 24, 248702. [CrossRef] [PubMed] [Google Scholar]
  5. D. A. Beysens, G. ForgacsJ. A. Glazier. Cell sorting is analogous to phase ordering in fluids. PNAS, 97 (2000), 9467–71 [Google Scholar]
  6. A. Czirók, E. A. Zamir, A. SzabóC. D. Little. Multicellular sprouting during vasculogenesis. Curr. Top. Dev. Biol., 81 (2008), 269–289 [CrossRef] [PubMed] [Google Scholar]
  7. A. T. DawesL. Edelstein-Keshet. Phosphoinositides and rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys. J., 92 (2007), No. 3, 744–768 [CrossRef] [PubMed] [Google Scholar]
  8. P. G. de Gennes, F. Brochard-Wyart, D. Quere. Capillarity and wetting phenomena. Springer, New York, 2003. [Google Scholar]
  9. A. Dipasquale. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp. Cell Res., 95 (1975), No. 2, 425–439 [CrossRef] [PubMed] [Google Scholar]
  10. O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. SilberzanB. Ladoux. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U S A, 102 (2005), No. 7, 2390–2395 [Google Scholar]
  11. G. Forgacs, R. A. Foty, Y. ShafrirM. S. Steinberg. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J., 74 (1998), No. 5, 2227–2234 [CrossRef] [PubMed] [Google Scholar]
  12. R. A. Foty, C. M. Pfleger, G. ForgacsM. S. Steinberg. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 122 (1996), No. 5, 1611–1620 [PubMed] [Google Scholar]
  13. R. A. FotyM. S. Steinberg. The differential adhesion hypothesis: a direct evaluation. Dev. Biol., 278 (2005), No. 1 Cell migration, 255–263 [Google Scholar]
  14. P. Friedl. Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol., 122 (2004), 183–90 [CrossRef] [PubMed] [Google Scholar]
  15. P. FriedlK. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res., 68 (2008), No. 18, 7247–7249 [CrossRef] [PubMed] [Google Scholar]
  16. A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino. Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90 (2003), No. 11, 118101. [CrossRef] [PubMed] [Google Scholar]
  17. H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. ShimaC. Betsholtz. Vegf guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161 (2003), No. 6, 1163–1177 [CrossRef] [PubMed] [Google Scholar]
  18. J. A. GlazierF. Graner. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), No. 3, 2128–2154 [CrossRef] [PubMed] [Google Scholar]
  19. F. GranerJ. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett., 69 (1992), No. 13, 2013–2016 [CrossRef] [PubMed] [Google Scholar]
  20. D. S. Gray, J. TienC. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned young’s modulus. J. Biomed. Mater. Res. A., 66 (2003), 605–14 [CrossRef] [PubMed] [Google Scholar]
  21. B. Hegedüs, F. Marga, K. Jakab, K. L. Sharpe-TimmsG. Forgacs. The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. Biophysical J., 91 (2006), No. 7, 2708–16 [Google Scholar]
  22. K. A. HoganV. L. Bautch. Blood vessel patterning at the embryonic midline. Curr. Top. Dev. Biol., 62 (2004), 55–85 [CrossRef] [PubMed] [Google Scholar]
  23. M. S. Hutson, G. W. Brodland, J. Yang, D. Viens. Cell sorting in three dimensions: topology, fluctuations, and fluidlike instabilities. Phys. Rev. Lett., 101 (2008), No. 14, 148105. [CrossRef] [PubMed] [Google Scholar]
  24. J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G. Thomas, G. Forgacs, M. Alber, G. Hentschel, S. A. Newman, J. A. Glazier. Compucell, a multi-model framework for simulation of morphogenesis. Bioinformatics, 20 (2004), No. 7, 1129–1137. [CrossRef] [PubMed] [Google Scholar]
  25. G. Jiang, A. H. Huang, Y. Cai, M. TanaseM. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and rptpalpha. Biophys J., 90 (2006), 1804–9 [CrossRef] [PubMed] [Google Scholar]
  26. S. KidoakiT. Matsuda. Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy. J. Biomed. Mater. Res. A., 81 (2007), No. 4, 803–810 [PubMed] [Google Scholar]
  27. T. Libotte, H. W. Kaiser, W. Alt, T. Bretschneider. Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration. Exp. Cell Res., 270 (2001), No 2, 129–137. [CrossRef] [PubMed] [Google Scholar]
  28. C. M. Lo, H. B. Wang, M. DemboY. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys J., 79 (2000), No. 1 Cell migration, 144–152 [Google Scholar]
  29. D. Manoussaki, S. R. Lubkin, R. B. VernonJ. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor, 44 (1996), No. 3-4, 271–282 [Google Scholar]
  30. R. M. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. NewmanJ. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289 (2006), 44–54 [CrossRef] [PubMed] [Google Scholar]
  31. R. M. H. Merks, E. D. Perryn, A. Shirinifard, J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol., 4 (2008), No. 9, e1000163. [Google Scholar]
  32. D. J. Montell. Morphogenetic cell movements: diversity from modular mechanical properties. Science, 322 (2008), No. 5907, 1502–1505 [CrossRef] [PubMed] [Google Scholar]
  33. J. D. Murray. Mathematical Biology. Springer Verlag, Berlin, 2nd edition, 2003. [Google Scholar]
  34. J. D. Murray, D. Manoussaki, S. R. Lubkin, R. Vernon. A mechanical theory of in vitro vascular network formation. In C. D. Little, V Mironov, and E. H. Sage, editors, Vascular morphogenesis: In vivo, in vitro, in mente., pages 223–239. Birkhauser, Boston, 1998. [Google Scholar]
  35. T. J. Newman. Modeling multicellular systems using subcellular elements. Math. Biosci. Eng., 2 (2005), 611–622 [Google Scholar]
  36. E. D. Perryn, A. CzirókC. D. Little. Vascular sprout formation entails tissue deformations and ve-cadherin-dependent cell-autonomous motility. Dev. Biol., 313 (2008), 545–55 [CrossRef] [PubMed] [Google Scholar]
  37. A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. ParsonsA. R. Horwitz. Cell migration: integrating signals from front to back. Science, 302 (2003), No. 5651, 1704–1709 [CrossRef] [PubMed] [Google Scholar]
  38. J. P. Rieu, A. Upadhyaya, J. A. Glazier, N. B. OuchiY. Sawada. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys J., 79 (2000), 1903–14 [Google Scholar]
  39. P. A. Rupp, A. CzirókC. D. Little. alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. Development, 131 (2004), No. 12, 2887–97 [CrossRef] [PubMed] [Google Scholar]
  40. R. K. SawhneyJ. Howard. Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J. Cell Biol., 157 (2002), No. 6, 1083–1091 [CrossRef] [PubMed] [Google Scholar]
  41. D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. LarsenH. Flyvbjerg. Cell motility as persistent random motion: theories from experiments. Biophys J., 89 (2005), 912–31 [Google Scholar]
  42. G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. PreziosiF. Bussolino. Modeling the early stages of vascular network assembly. EMBO J., 22 (2003), 1771–9 [CrossRef] [PubMed] [Google Scholar]
  43. C. L. Stokes, D. A. LauffenburgerS. K. Williams. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci., 99 (1991), 419–30 [PubMed] [Google Scholar]
  44. A. Szabó, R. Ünnep, E. Méhes, W. Twal, S. Argraves, Y. Cho, A. Czirók. Collective cell motion in endothelial monolayers. (preprint) [Google Scholar]
  45. A. Szabó, E. Méhes, E. KósaA. Czirók. Multicellular sprouting in vitro. Biophys J., 95 (2008), No. 6, 2702–2710 [Google Scholar]
  46. A. Szabó, E. D. Perryn, A. Czirók. Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett., 98 (2007), No. 3, 038102. [CrossRef] [PubMed] [Google Scholar]
  47. J. M. TeddyP. M. Kulesa. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development, 131 (2004), No. 24, 6141–6151 [CrossRef] [PubMed] [Google Scholar]
  48. E. Tzima, M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisserM. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437 (2005), No. 7057, 426–431 [CrossRef] [PubMed] [Google Scholar]
  49. A. Upadhyaya, J.-P. Rieu, J. A. GlazierY. Sawada. Anomalous diffusion and non-gaussian velocity distribution of hydra cells in cellular aggregates. Physica A, 293 (2001), 549–558 [CrossRef] [Google Scholar]
  50. A. B. Verkhovsky, T. M. SvitkinaG. G. Borisy. Self-polarization and directional motility of cytoplasm. Curr. Biol., 9 (1999), No. 1 Cell migration, 11–20 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.