Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 84 - 105
DOI https://doi.org/10.1051/mmnp/20105104
Published online 03 February 2010
  1. B. Alberts. Molecular biology of the cell, 4th ed., Garland Science, New York, 2002. [Google Scholar]
  2. A. Bernheim-Groswasser, S. Wiesner, R. M. Golsteyn, M. F. CarlierC. Sykes. The dynamics of actin-based motility depend on surface parameters, Nature, 417 (2002), No. 6886, 308–311 [CrossRef] [PubMed] [Google Scholar]
  3. A. C. Callan-Jones, J.-F. JoannyJ. Prost. Viscous-fingering-like instability of cell fragments, Phys. Rev. Lett., 100 (2008), 258106 [CrossRef] [PubMed] [Google Scholar]
  4. Y. Calle, S. Burns, A. J. ThrasherG. E. Jones. The leukocyte podosome., Eur. J. Cell. Biol., 85 (2006), No. 3-4, 151–157 [CrossRef] [PubMed] [Google Scholar]
  5. C. Le Clainche, M.-F. Carlier. Regulation of actin assembly associated with protrusion and adhesion in cell migration., Physiol. Rev., 88, (2008), No. 2, 489–513. [CrossRef] [PubMed] [Google Scholar]
  6. M. Dogterom, M.E. Janson, C. Faivre-Moskalenko, A. van der Horst, J.W.J. Kerssemakers, C. TanaseB.M. Mulder. Force generation by polymerizing microtubules, Applied Physics A: Materials Science & Processing, 75 (2002), No. 2, 331–336 [CrossRef] [Google Scholar]
  7. C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. GoldsteinJohn O. Kessler. Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., 93 (2004), No. 9, 098103 [CrossRef] [PubMed] [Google Scholar]
  8. G. Faure-André, P. Vargas, M.-I. Yuseff, M. Heuzé, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M.-R. Bono, M. Rosemblatt, M. PielA.-M. Lennon-Duménil. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain., Science, 322 (2008), No. 5908, 1705–1710 [CrossRef] [PubMed] [Google Scholar]
  9. F. Gerbal, P. Chaikin, Y. RabinJ. Prost. An elastic analysis of listeria monocytogenes propulsion., Biophys. J., 79 (2000), No. 5, 2259–2275 [CrossRef] [PubMed] [Google Scholar]
  10. P. G. de Gennes, J. Prost. The Physics of Liquid Crystals. Oxford. Univ. Press, Oxford, 1993. [Google Scholar]
  11. Y. Hatwalne, S. Ramaswamy, M. RaoR. A. Simha. Rheology of active-particle suspensions., Phys. Rev. Lett., 92 (2004), No. 11, 118101 [CrossRef] [PubMed] [Google Scholar]
  12. R. J. Hawkins, M. Piel, G. Faure-Andre, A. M. Lennon-Dumenil, J. F. Joanny, J. ProstR. Voituriez. Pushing off the walls: a mechanism of cell motility in confinement., Phys. Rev. Lett., 102 (2009), No. 5, 058103 [CrossRef] [PubMed] [Google Scholar]
  13. S. F. G. van Helden, D. J. E. B. Krooshoop, K. C. M. Broers, R. A. P. Raymakers, C. G. FigdorF. N. van Leeuwen. A critical role for prostaglandin e2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation., J. Immunol., 177 (2006), No. 3, 1567–1574 [PubMed] [Google Scholar]
  14. F. Julicher, K. Kruse, J. ProstJ. F. Joanny. Active behavior of the cytoskeleton, Physics Reports, 449 (2007), No. 1-3, 3–28 [CrossRef] [MathSciNet] [Google Scholar]
  15. K. Kruse, J. F. Joanny, F. Jülicher, J. ProstK. Sekimoto. Asters, vortices, and rotating spirals in active gels of polar filaments., Phys. Rev. Lett., 92 (2004), No. 7, 078101 [CrossRef] [PubMed] [Google Scholar]
  16. K. Kruse, J. F. Joanny, F. Jülicher, J. ProstK. Sekimoto. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics., Eur. Phys. J. E Soft Matter, 16 (2005), No. 1 Cell migration, 5–16 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. K. Kruse, J. F. Joanny, F. JülicherJ. Prost. Contractility and retrograde flow in lamellipodium motion., Phys Biol, 3 (2006), No. 2, 130–137 [CrossRef] [PubMed] [Google Scholar]
  18. T. Lämmermann, B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. Keller, R. Förster, D. R. Critchley, R. FässlerM. Sixt. Rapid leukocyte migration by integrin-independent flowing and squeezing., Nature, 453 (2008), No. 7191, 51–55 [CrossRef] [PubMed] [Google Scholar]
  19. R. Larson. Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, 1998. [Google Scholar]
  20. T. B. LiverpoolM. C. Marchetti. Instabilities of isotropic solutions of active polar filaments., Phys Rev Lett, 90 (2003), No. 13, 138102 [CrossRef] [PubMed] [Google Scholar]
  21. S. E. MalawistaA. de Boisfleury Chevance. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (pmn) in the presence of edta: Pmn in close quarters require neither leukocyte integrins nor external divalent cations., Proc. Natl. Acad. Sci. USA, 94 (1997), No. 21, 11577–11582 [CrossRef] [Google Scholar]
  22. D. Marenduzzo, E. Orlandini, M. E. CatesJ. M. Yeomans. Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice boltzmann simulations, Phys. Rev. E, 76 (2007), No. 3, 031921 [CrossRef] [Google Scholar]
  23. D. Marenduzzo, E. Orlandini, M. E. CatesJ. M. Yeomans. Lattice boltzmann simulations of spontaneous flow in active liquid crystals: The role of boundary conditions, J. Non-Newton. Fluid Mech., 149 (2008), no. 1-3, 56–62 [CrossRef] [Google Scholar]
  24. A. MogilnerG. Oster. Cell motility driven by actin polymerization, Biophys J., 71 (1996), no. 6, 3030–3045 [CrossRef] [PubMed] [Google Scholar]
  25. V. Narayan, S. RamaswamyN. Menon. Long-lived giant number fluctuations in a swarming granular nematic, Science, 317 (2007), No. 5834, 105–108 [CrossRef] [PubMed] [Google Scholar]
  26. F. J. Nedelec, T. Surrey, A. C. MaggsS. Leibler. Self-organization of microtubules and motors, Nature, 389 (1997), No. 6648, 305–308 [CrossRef] [PubMed] [Google Scholar]
  27. T. D. PollardG. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments., Cell, 112 (2003), No. 4, 453–465 [CrossRef] [PubMed] [Google Scholar]
  28. J. M. Serrador, M. NietoF. Sánchez-Madrid. Cytoskeletal rearrangement during migration and activation of t lymphocytes., Trends. Cell. Biol., 9 (1999), No. 6, 228–233 [CrossRef] [PubMed] [Google Scholar]
  29. R. A. SimhaS. Ramaswamy. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles., Phys Rev Lett, 89 (2002), No. 5, 058101 [CrossRef] [PubMed] [Google Scholar]
  30. J. A. TheriotT. J. Mitchison. Actin microfilament dynamics in locomoting cells., Nature, 352 (1991), No. 6331, 126–131 [CrossRef] [PubMed] [Google Scholar]
  31. J. Toner, Y. TuS. Ramaswamy. Hydrodynamics and phases of flocks., Annals of Physics, 318 (2005), No. 1 Cell migration, 170–244 [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Voituriez, J. F. JoannyJ. Prost. Spontaneous flow transition in active polar gels, Europhys. Lett., 70 (2005), No. 3, 404–410 [CrossRef] [Google Scholar]
  33. R. Voituriez, J. F. JoannyJ. Prost. Generic phase diagram of active polar films., Phys. Rev. Lett., 96 (2006), No. 2, 028102 [CrossRef] [PubMed] [Google Scholar]
  34. P. T. Yam, C. A. Wilson, L. Ji, B. Hebert, E. L. Barnhart, N. A. Dye, P. W. Wiseman, G. DanuserJ. A. Theriot. Actin myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility, The Journal of Cell Biology, 178 (2007), No. 7, 1207–1221 [CrossRef] [PubMed] [Google Scholar]
  35. A. Zumdieck, R. Voituriez, J. ProstJ. F. Joanny. Spontaneous flow of active polar gels in undulated channels, Faraday Discuss., 139 (2008), 369 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.