Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 56 - 83
DOI https://doi.org/10.1051/mmnp/20105103
Published online 03 February 2010
  1. I. Bischofs, F. Klein, D. Lehnert, M. BastmeyerU. Schwarz. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J, 95 (2008), 3488–3496 [CrossRef] [PubMed] [Google Scholar]
  2. M. Block, C. Badowski, A. Millon-Fremillon, D. Bouvard, A. Bouin, E. Faurobert, D. Gerber-Scokaert, E. PlanusC. Albigès-Rizo. Podosome type adhesions and focal adhesions, so alike and yet so different. Eur. J. Cell Biol., 87 (2008), 491–506 [CrossRef] [PubMed] [Google Scholar]
  3. J. Broussard, D. WebbI. Kaverina. Asymmetric focal adhesion disassembly in motile cells. Curr. Opin. Cell Biol., 20 (2008), 85–90 [CrossRef] [PubMed] [Google Scholar]
  4. H. Coskun, Y. LiM. Mackey. Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. J. Theor. Biol., 244 (2007), 169–179 [CrossRef] [PubMed] [Google Scholar]
  5. V. Deshpande>, R. McMeekingA. Evans. A bio-chemo-mechanical model for cell contractility. PNAS, 103 (2006), 14015-14020 [CrossRef] [Google Scholar]
  6. V. Deshpande>, R. McMeekingA. Evans. A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. R. Soc. A, 463 (2007), 787-815 [CrossRef] [Google Scholar]
  7. A. Efimov, N. Schiefermeier, I. Grigoriev, M. Brown, C. Turner, J. SmallI. Kaverina. Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. J. Cell Sci., 121 (2008), 196–204 [CrossRef] [PubMed] [Google Scholar]
  8. A. Engler, S. Sen, H. SweeneyD. Discher. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126 (2006), 677–689 [CrossRef] [PubMed] [Google Scholar]
  9. P. FriedlK. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer, 3 (2003), 362-374 [CrossRef] [PubMed] [Google Scholar]
  10. C. Galbraith, K. YamadaM. Sheetz. The relationship between force and focal complex development. J. Cell Biol., 159 (2002), No. 4, 695–705 [CrossRef] [PubMed] [Google Scholar]
  11. B. Geiger, J. SpatzA. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol., 10 (2009), 21–33 [CrossRef] [PubMed] [Google Scholar]
  12. G. Giannone, B. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. Dobereiner, Y. Freund, G. BorisyM. Sheetz. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell, 128 (2007), 561–575 [CrossRef] [PubMed] [Google Scholar]
  13. H. Guillou, A. Depraz-Depl, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-RizoM. Block. Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Exp. Cell Res., 314 (2008), 478-488 [CrossRef] [PubMed] [Google Scholar]
  14. P. HotulainenP. Lappalainen. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol., 173 (2006), 383–394 [CrossRef] [PubMed] [Google Scholar]
  15. J. James, E. Goluch, H. Hu, C. LiuM. Mrksich. Subcellular Curvature at the Perimeter of Micropatterned Cells Influences Lamellipodial Distribution and Cell Polarity. Cell Motil. Cytoskeleton, 65 (2008), 841–852 [CrossRef] [PubMed] [Google Scholar]
  16. G. Jiang, A. Huang, Y. Cai, M. TanaseM. Sheetz. Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα. Biophys. J., 90 (2006), 1804–1809 [CrossRef] [PubMed] [Google Scholar]
  17. R. Kaunas, H. Hsu. A kinematic model of stretch-induced stress fiber turnover and reorientation, J. Theor. Biol., 257 (2009), 320–330. [CrossRef] [PubMed] [Google Scholar]
  18. E. KuuselaW. Alt. Continuum model of cell adhesion and migration. J. Math. Biol., 58 (2009), 135–161 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. K. Lazopoulos, D. Stamenovic. A mathematical model of cell reorientation in response to substrate stretching. Mol. Cell. Biomech., 3 (2006), 43. [PubMed] [Google Scholar]
  20. J. Lock, B. Wehrle-HallerS. Strömblad. Cell–matrix adhesion complexes: master control machinery of cell migration. International Journal of Solids and Structures, 18 (2008), 65–76 [Google Scholar]
  21. Y. Luo, X. Xu, T. Lele, S. KumarD. Ingber. A multi-modular tensegrity model of an actin stress fiber. J. Biomech., 41 (2008), 2379–2387 [CrossRef] [PubMed] [Google Scholar]
  22. P. Naumanen, P. LappalainenP. Hotulainen. Mechanisms of actin stress fibre assembly. J. Microsc., 231 (2008), 446-454 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. A. Pathak, V. Deshpande, R. McMeekingA. Evans. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface, 5 (2008), 507–524 [CrossRef] [PubMed] [Google Scholar]
  24. S. PellegrinH. Mellor. Actin stress fibres. J. Cell Sci., 120 (2007), 3491–3499 [CrossRef] [PubMed] [Google Scholar]
  25. R. Rid, N. Schiefermeier, I. Grigoriev, J. SmallI. Kaverina. The Last but not the Least: The Origin and Significance of Trailing Adhesions in Fibroblastic Cells. Cell Motil. Cytoskeleton, 61 (2005), 161–171 [CrossRef] [PubMed] [Google Scholar]
  26. A. Saez, M. Ghibaudo, A. Buguin, P. SilberzanB. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. PNAS, 104 (2007), 8281–8286 [CrossRef] [PubMed] [Google Scholar]
  27. Y. SenjuH. Miyata. The role of actomyosin contractility in the formation and dynamics of actin bundles during fibroblasts spreading. J. Biochem., 145 (2008), 137-150 [CrossRef] [PubMed] [Google Scholar]
  28. J. Small, S. Auinger, M. Nemethova, S. Koestler, K. Goldie, A. HoengerG. Resch. Unravelling the structure of the lamellipodium. J. Microsc., 231 (2008), 479-485 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  29. D. Stamenovic. Contractile torque as a steering mechanism for orientation of adherent cells. Mol. Cell. Biomech., 2 (2005), 69. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  30. A. Stéphanou. A computational framework integrating cytoskeletal and adhesion dynamics for modelling cell motility. Cell Mechanics, From Single Scale-Based Models to Multiscale Modeling. Chapman & Hall / CRC Press, Ed. A. Chauvire, L.Preziosi & C. Verdier, 2009. [Google Scholar]
  31. A. Stéphanou, M. ChaplainP. Tracqui. A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts. Bull. Math. Biol., 66 (2004), 1119–1154 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. A. Stéphanou, E. Mylona, M. ChaplainP. Tracqui. A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J. Theor. Biol., 253 (2008), 701–716 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  33. J. Tan, J. Tien, D. Pirone, D. Gray, K. BhadrirajuC. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS, 100 (2003), 1484–1489 [CrossRef] [Google Scholar]
  34. M. Théry, A. Pépin, E. Dressaire, Y. ChenM. Bornens. Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment. Cell Motil. Cytoskeleton, 63 (2006), 341–355 [CrossRef] [PubMed] [Google Scholar]
  35. T. Tzvetkova-Chevolleau, A. Stéphanou, D. Fuard, J. Ohayon, P. SchiavoneP. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials, 29 (2008), 1541–1551 [CrossRef] [PubMed] [Google Scholar]
  36. M. Vicente-Manzanares, C. ChoiA. Horwitz. Integrins in cell migration-the actin connection. J. Cell Sci., 122 (2009), 199–206 [CrossRef] [PubMed] [Google Scholar]
  37. H. Wolfenson, Y. Henis, B. GeigerA. Bershadsky. The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskeleton, 66 (2009), 1017–1029 [CrossRef] [PubMed] [Google Scholar]
  38. D. WorthM. Parsons. Adhesion dynamics: Mechanisms and measurements. Int. J. Biochem. Cell Biol., 40 (2008), 2397-2409 [CrossRef] [PubMed] [Google Scholar]
  39. R. Zaidel-Bar, C. Ballestrem, Z. KamB. Geiger. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci., 116 (2003), 4605–4613 [CrossRef] [PubMed] [Google Scholar]
  40. R. Zaidel-Bar, M. Cohen, L. AddadiB. Geiger. Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans., 32 (2004), 416–420 [CrossRef] [PubMed] [Google Scholar]
  41. R. Zaidel-Bar, S. Itzkovitz, A. Ma’ayan, R. IyengarB. Geiger. Functional atlas of the integrin adhesome. Nat. Cell Biol., 9 (2007), 858–867 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.