Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 56 - 83
DOI https://doi.org/10.1051/mmnp/20105103
Published online 03 February 2010
  1. I. Bischofs, F. Klein, D. Lehnert, M. BastmeyerU. Schwarz. Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys. J, 95 (2008), 3488–3496 [CrossRef] [PubMed]
  2. M. Block, C. Badowski, A. Millon-Fremillon, D. Bouvard, A. Bouin, E. Faurobert, D. Gerber-Scokaert, E. PlanusC. Albigès-Rizo. Podosome type adhesions and focal adhesions, so alike and yet so different. Eur. J. Cell Biol., 87 (2008), 491–506 [CrossRef] [PubMed]
  3. J. Broussard, D. WebbI. Kaverina. Asymmetric focal adhesion disassembly in motile cells. Curr. Opin. Cell Biol., 20 (2008), 85–90 [CrossRef] [PubMed]
  4. H. Coskun, Y. LiM. Mackey. Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. J. Theor. Biol., 244 (2007), 169–179 [CrossRef] [PubMed]
  5. V. Deshpande>, R. McMeekingA. Evans. A bio-chemo-mechanical model for cell contractility. PNAS, 103 (2006), 14015-14020 [CrossRef]
  6. V. Deshpande>, R. McMeekingA. Evans. A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc. R. Soc. A, 463 (2007), 787-815 [CrossRef]
  7. A. Efimov, N. Schiefermeier, I. Grigoriev, M. Brown, C. Turner, J. SmallI. Kaverina. Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites. J. Cell Sci., 121 (2008), 196–204 [CrossRef] [PubMed]
  8. A. Engler, S. Sen, H. SweeneyD. Discher. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126 (2006), 677–689 [CrossRef] [PubMed]
  9. P. FriedlK. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer, 3 (2003), 362-374 [CrossRef] [PubMed]
  10. C. Galbraith, K. YamadaM. Sheetz. The relationship between force and focal complex development. J. Cell Biol., 159 (2002), No. 4, 695–705 [CrossRef] [PubMed]
  11. B. Geiger, J. SpatzA. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol., 10 (2009), 21–33 [CrossRef] [PubMed]
  12. G. Giannone, B. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. Dobereiner, Y. Freund, G. BorisyM. Sheetz. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell, 128 (2007), 561–575 [CrossRef] [PubMed]
  13. H. Guillou, A. Depraz-Depl, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-RizoM. Block. Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Exp. Cell Res., 314 (2008), 478-488 [CrossRef] [PubMed]
  14. P. HotulainenP. Lappalainen. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol., 173 (2006), 383–394 [CrossRef] [PubMed]
  15. J. James, E. Goluch, H. Hu, C. LiuM. Mrksich. Subcellular Curvature at the Perimeter of Micropatterned Cells Influences Lamellipodial Distribution and Cell Polarity. Cell Motil. Cytoskeleton, 65 (2008), 841–852 [CrossRef] [PubMed]
  16. G. Jiang, A. Huang, Y. Cai, M. TanaseM. Sheetz. Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα. Biophys. J., 90 (2006), 1804–1809 [CrossRef] [PubMed]
  17. R. Kaunas, H. Hsu. A kinematic model of stretch-induced stress fiber turnover and reorientation, J. Theor. Biol., 257 (2009), 320–330. [CrossRef] [PubMed]
  18. E. KuuselaW. Alt. Continuum model of cell adhesion and migration. J. Math. Biol., 58 (2009), 135–161 [CrossRef] [MathSciNet] [PubMed]
  19. K. Lazopoulos, D. Stamenovic. A mathematical model of cell reorientation in response to substrate stretching. Mol. Cell. Biomech., 3 (2006), 43. [PubMed]
  20. J. Lock, B. Wehrle-HallerS. Strömblad. Cell–matrix adhesion complexes: master control machinery of cell migration. International Journal of Solids and Structures, 18 (2008), 65–76
  21. Y. Luo, X. Xu, T. Lele, S. KumarD. Ingber. A multi-modular tensegrity model of an actin stress fiber. J. Biomech., 41 (2008), 2379–2387 [CrossRef] [PubMed]
  22. P. Naumanen, P. LappalainenP. Hotulainen. Mechanisms of actin stress fibre assembly. J. Microsc., 231 (2008), 446-454 [CrossRef] [MathSciNet] [PubMed]
  23. A. Pathak, V. Deshpande, R. McMeekingA. Evans. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface, 5 (2008), 507–524 [CrossRef] [PubMed]
  24. S. PellegrinH. Mellor. Actin stress fibres. J. Cell Sci., 120 (2007), 3491–3499 [CrossRef] [PubMed]
  25. R. Rid, N. Schiefermeier, I. Grigoriev, J. SmallI. Kaverina. The Last but not the Least: The Origin and Significance of Trailing Adhesions in Fibroblastic Cells. Cell Motil. Cytoskeleton, 61 (2005), 161–171 [CrossRef] [PubMed]
  26. A. Saez, M. Ghibaudo, A. Buguin, P. SilberzanB. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. PNAS, 104 (2007), 8281–8286 [CrossRef] [PubMed]
  27. Y. SenjuH. Miyata. The role of actomyosin contractility in the formation and dynamics of actin bundles during fibroblasts spreading. J. Biochem., 145 (2008), 137-150 [CrossRef] [PubMed]
  28. J. Small, S. Auinger, M. Nemethova, S. Koestler, K. Goldie, A. HoengerG. Resch. Unravelling the structure of the lamellipodium. J. Microsc., 231 (2008), 479-485 [CrossRef] [MathSciNet] [PubMed]
  29. D. Stamenovic. Contractile torque as a steering mechanism for orientation of adherent cells. Mol. Cell. Biomech., 2 (2005), 69. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  30. A. Stéphanou. A computational framework integrating cytoskeletal and adhesion dynamics for modelling cell motility. Cell Mechanics, From Single Scale-Based Models to Multiscale Modeling. Chapman & Hall / CRC Press, Ed. A. Chauvire, L.Preziosi & C. Verdier, 2009.
  31. A. Stéphanou, M. ChaplainP. Tracqui. A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts. Bull. Math. Biol., 66 (2004), 1119–1154 [CrossRef] [MathSciNet] [PubMed]
  32. A. Stéphanou, E. Mylona, M. ChaplainP. Tracqui. A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J. Theor. Biol., 253 (2008), 701–716 [CrossRef] [MathSciNet] [PubMed]
  33. J. Tan, J. Tien, D. Pirone, D. Gray, K. BhadrirajuC. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS, 100 (2003), 1484–1489 [CrossRef]
  34. M. Théry, A. Pépin, E. Dressaire, Y. ChenM. Bornens. Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment. Cell Motil. Cytoskeleton, 63 (2006), 341–355 [CrossRef] [PubMed]
  35. T. Tzvetkova-Chevolleau, A. Stéphanou, D. Fuard, J. Ohayon, P. SchiavoneP. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials, 29 (2008), 1541–1551 [CrossRef] [PubMed]
  36. M. Vicente-Manzanares, C. ChoiA. Horwitz. Integrins in cell migration-the actin connection. J. Cell Sci., 122 (2009), 199–206 [CrossRef] [PubMed]
  37. H. Wolfenson, Y. Henis, B. GeigerA. Bershadsky. The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil. Cytoskeleton, 66 (2009), 1017–1029 [CrossRef] [PubMed]
  38. D. WorthM. Parsons. Adhesion dynamics: Mechanisms and measurements. Int. J. Biochem. Cell Biol., 40 (2008), 2397-2409 [CrossRef] [PubMed]
  39. R. Zaidel-Bar, C. Ballestrem, Z. KamB. Geiger. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci., 116 (2003), 4605–4613 [CrossRef] [PubMed]
  40. R. Zaidel-Bar, M. Cohen, L. AddadiB. Geiger. Hierarchical assembly of cell-matrix adhesion complexes. Biochem. Soc. Trans., 32 (2004), 416–420 [CrossRef] [PubMed]
  41. R. Zaidel-Bar, S. Itzkovitz, A. Ma’ayan, R. IyengarB. Geiger. Functional atlas of the integrin adhesome. Nat. Cell Biol., 9 (2007), 858–867 [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.