Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 34 - 55
DOI https://doi.org/10.1051/mmnp/20105102
Published online 03 February 2010
  1. M. Affolter, C. Weijer. Signaling to cytoskeletal dynamics during chemotaxis. Developmental Cell, 9 (2005), No. 1 Cell migration, 19–34 [CrossRef] [PubMed] [Google Scholar]
  2. N. Andrew, R. Insall. Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nature cell biology, 9 (2007), No. 2, 193–200 [CrossRef] [PubMed] [Google Scholar]
  3. O. Al-Kofahi, R. Radke, S. Goderie, Q. Shen, S. TempleB. Roysam. Automated cell lineage construction: A rapid method to analyze clonal development established with murine neural progenitor cells. Cell Cycle, 5 (2006), No. 3, 327–335 [CrossRef] [PubMed] [Google Scholar]
  4. B. Bollobas. Modern graph theory. Springer Verlag, 1998. [Google Scholar]
  5. L. Bosgraaf, P. van HaastertT. Bretschneider. Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using Quimp2. Cell Motility and the Cytoskeleton, 66 (2009), No. 3, 156–165 [CrossRef] [PubMed] [Google Scholar]
  6. D. Bray. Cell movements: from molecules to motility. Routledge, 2001. [Google Scholar]
  7. F. Chan, F. Lam, H. Zhu. Adaptive thresholding by variational method. IEEE Transactions on Image Processing, 7 (1998), No. 3, 468–473. [CrossRef] [Google Scholar]
  8. L. Cohen. On active contour models and balloons. CVGIP: Image understanding, 53 (1991), No. 2, 211–218 [CrossRef] [Google Scholar]
  9. J. Dalous, E. Burghardt, A. Muller-Taubenberger, F. Bruckert, G. GerischT. Bretschneider. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation. Biophysical journal, 94 (2008), No. 3, 1063–1074 [CrossRef] [PubMed] [Google Scholar]
  10. O. Debeir, I. Camby, R. Kiss, P. Van HamC. Decaestecker. A model-based approach for automated in vitro cell tracking and chemotaxis analyses. Cytometry Part A, 60 (2004), 29–40 [CrossRef] [Google Scholar]
  11. C. Decaestecker, O. Debeir, P. Van Ham, R. Kiss. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Medicinal Research Reviews, 27 (2007), No. 2. [CrossRef] [PubMed] [Google Scholar]
  12. D. Dormann, T. Libotte, C. WeijerT. Bretschneider. Simultaneous quantification of cell motility and protein-membrane-association using active contours. Cell Motil Cytoskeleton, 52 (2002), No. 4, 221–30 [CrossRef] [PubMed] [Google Scholar]
  13. T. Driscoll. The Schwarz-Christoffel Toolbox for MATLAB. Available at: http://www.math.udel.edu/ driscoll/software/ . (Accessed: 21 Sep. 2009). [Google Scholar]
  14. A. Dufour, V. Shinin, S. Tajbakhsh, N. Guillen-Aghion, J. Olivo-MarinC. Zimmer. Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Transactions on Image Proc., 14 (2005), No. 9, 1396–1410 [CrossRef] [Google Scholar]
  15. P. Friedl, B. Weigelin. Interstitial leukocyte migration and immune function. Nature Immunology, 9 (2008), No. 9, 960–969. [CrossRef] [PubMed] [Google Scholar]
  16. P. Friedl, Y. HegerfeldtM. Tusch. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol., 48 (2004), 441–449 [CrossRef] [PubMed] [Google Scholar]
  17. P. Heid, J. Geiger, D. Wessels, E. VossD. Soll. Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium. Journal of cell science, 118 (2005), No. 10, 2225–2237 [CrossRef] [PubMed] [Google Scholar]
  18. Z. HouC. Han. Force field analysis snake: an improved parametric active contour model. Pattern Recognition Letters, 26 (2005), No. 5, 513–526 [CrossRef] [Google Scholar]
  19. L. Ji, J. Lim, G. Danuser. Fluctuations of intracellular forces during cell protrusion. Nature cell biology, 10 (2008), No. 12, 1393–1400. [CrossRef] [PubMed] [Google Scholar]
  20. M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, (1988), No. 1 Cell migration, 321–331. [CrossRef] [Google Scholar]
  21. R. Kay, P. Langridge, D. TraynorO. Hoeller. Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Bio, 9 (2008), No. 6, 455–463 [CrossRef] [Google Scholar]
  22. T. Libotte, H. Kaiser, W. Alt, T. Bretschneider. Polarity, protrusion–retraction dynamics and their interplay during keratinocyte cell migration. Experimental Cell Research, 270 2001, No. 2, 129–137. [CrossRef] [PubMed] [Google Scholar]
  23. M. MachacekG. Danuser. Morphodynamic Profiling of Protrusion Phenotypes Biophysical Journal. Biophysical Soc., 90 (2006), No. 4, 1439–1452 [CrossRef] [PubMed] [Google Scholar]
  24. M. Machacek, L. Hodgson, C. Welch, H. Elliott, O. Pertz, P. Nalbant, A. Abell, G. Johnson, K. Hahn, G. Danuser. Coordination of Rho GTPase activities during cell protrusion. Nature, 461 (2009), No. 7260, 99–103. [CrossRef] [PubMed] [Google Scholar]
  25. R. Meili, C. Ellsworth, S. Lee, T. Reddy, H. MaR. Firtel. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. The EMBO Journal, 18 (1999), No. 8, 2092–2105 [CrossRef] [PubMed] [Google Scholar]
  26. K. Miura. Tracking movement in cell biology. Advances in Biochemical Engineering Biotechnology, 95 (2005), 267–296 [Google Scholar]
  27. S. OsherJ. Sethian. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79 (1988), 12–49 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Ridley, M. Peckham, P. Clark. Cell motility: from molecules to organisms. John Wiley & Sons Inc, 2004. [Google Scholar]
  29. A. Ridley, M. Schwartz, K. Burridge, R. Firtel, M. Ginsberg, G. Borisy, J. ParsonsA. Horwitz. Cell Migration: Integrating Signals from Front to Back. Science, 302 (2003), No. 5651, 1704–1709 [CrossRef] [PubMed] [Google Scholar]
  30. A. Sarti, C. Ortiz de Solorzano, S. LockettR. Malladi. A geometric model for 3-D confocal image analysis. IEEE Transactions on Biomedical Engineering, 47 (2000), No. 12, 1600–1609 [CrossRef] [Google Scholar]
  31. J. Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Univ Pr, (1999). [Google Scholar]
  32. D. Shutt, L. Jenkins, E. Carolan, J. Stapleton, K. Daniels, R. KennedyD. Soll. T cell syncytia induced by HIV release. T cell chemoattractants: demonstration with a newly developed single cell chemotaxis chamber. J. Cell Sci., 111 (1998), No. 1 Cell migration, 99–109 [PubMed] [Google Scholar]
  33. D. Soll. Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells. Computerized medical imaging and graphics, 23 (1999), No. 1 Cell migration, 3–14 [CrossRef] [Google Scholar]
  34. D. Soll. The use of computers in understanding how animal cells crawl. International review of cytology, 163 (1995), 43–104 [CrossRef] [PubMed] [Google Scholar]
  35. B. Sumengen. A Matlab toolbox implementing Level Set Methods. Available at: http://barissumengen.com/level_set_methods/. (Accessed: 21 Sep. 2009) [Google Scholar]
  36. Y. Tsukada, K. Aoki, T. Nakamura, Y. Sakumura, M. Matsuda, S. Ishii. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS Comp. Bio., 4 (2008), No. 11. [Google Scholar]
  37. P. Vallotton, A. Ponti, C. Waterman-Storer, E. SalmonG. Danuser. Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study. Biophysical journal, 85 (2003), No. 2, 1289–1306 [CrossRef] [PubMed] [Google Scholar]
  38. D. Veltman, I. Keizer-GunnikP. Van Haastert. Four key signaling pathways mediating chemotaxis in Dictyostelium discoideum. Journal of Cell Biology, 180 (2008), No. 4, 747–753 [CrossRef] [Google Scholar]
  39. D. Wessels, E. Voss, N. Von Bergen, R. Burns, J. StitesD. Soll. A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells. Cell motility and the cytoskeleton, 41 (1998), No. 3, 225–246 [CrossRef] [PubMed] [Google Scholar]
  40. K. Wu, D. Gauthier, M. Levine. Live cell image segmentation IEEE Transactions on Biomedical Engineering, 42 (1995), 42, 1–12. [Google Scholar]
  41. C. Xu, J. Prince. Snakes, shapes, and gradient vector flow IEEE Transactions on image Processing, IEEE Transactions on image proc., 7 (1998), No. 3, 359–369. [Google Scholar]
  42. L. Yang, J. Effler, B. Kutscher, S. Sullivan, D. RobinsonP. Iglesias. Modeling cellular deformations using the level set formalism. BMC Systems Biology, 2 (2008), No. 1 Cell migration, 68 [CrossRef] [PubMed] [Google Scholar]
  43. B. Zhang, C. ZimmerJ. Olivo-Marin. Tracking fluorescent cells with coupled geometric active contours. IEEE Inter. Symp. on Biomedical Imaging: Nano to Macro, 1 (2004), 476–479 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.