Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 163 - 202
DOI https://doi.org/10.1051/mmnp/20105108
Published online 03 February 2010
  1. T. Alarcon, H.M. ByrneP.K. Maini. A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225 (2003), 257–274 [CrossRef] [PubMed] [Google Scholar]
  2. A.R.A. AndersonM.A.J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60 (1998), 857–899 [CrossRef] [PubMed] [Google Scholar]
  3. A. Armulik, A. Abramsson, C. Betsholtz. (2005). Endothelial/pericyte interactions. Circulation Research, 97 (2005), 512–523 [CrossRef] [PubMed] [Google Scholar]
  4. D.H. AusprunkJ. Folkman. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res., 14 (1977), 53–65 [CrossRef] [PubMed] [Google Scholar]
  5. R.G. Bagley. Pericytes from human non-small cell lung carcinomas: An attractive target for anti-angiogenic therapy. Microvascular Res., 71 (2006), 163–174 [CrossRef] [Google Scholar]
  6. J.W. Baish, Y. Gazit, D.A. Berk, M. Nozue, L.T. BaxterR.K. Jain. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res., 51 (1996), 327–346 [CrossRef] [PubMed] [Google Scholar]
  7. L.E. Benjamin, I. HemoE. Keshet. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125 (1998), 1591–1598 [PubMed] [Google Scholar]
  8. D. Bray. Cell Movements. New-York: Garland Publishing, 1992. [Google Scholar]
  9. R.A. Brekken, P.E. Thorpe. Vascular endothelial growth factor and vascular targeting of solid tumors. 21 (2001), 4221–4229. [Google Scholar]
  10. C.F. Chantrain, P. Henriet, S. Jodele, H. Emonard, O. Feron, P.J. Courtoy, Y.A. DeClerck, E. Marbaix (2006). Mechanisms of pericyte recruitment in tumour angiogenesis: A new role for metalloproteinases. European J. Cancer, 42 (2006), 310–318 [CrossRef] [Google Scholar]
  11. M.A.J. ChaplainG. Lolas. Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activator system. Math. Mod. Meth. Appl. Sci., 11 (2005), 1685–1734 [Google Scholar]
  12. M. Ciofalo, M.W. Collins, T.R. Hennessy. “Microhydrodynamics phenomena in the circulation.” In: Nanoscale fluid dynamics in physiological processes: A review study. WIT Press, Southampton, 1999, pp 219–236. [Google Scholar]
  13. G.E. Davis, K.A. Pintar Allen, R. SalazarS.A. Maxwell. Matrix metalloproteinase-1 and –9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J. Cell Sci., 114 (2000), 917–930 [Google Scholar]
  14. A.W. El-KarehT.W. Secomb Theoretical models for drug delivery to solid tumours. Crit. Rev. Biomed. Eng., 25 (1997), 503–571 [PubMed] [Google Scholar]
  15. J. FolkmanM. Klagsbrun. Angiogenic factors. Science, 235 (1987), 442–447 [CrossRef] [PubMed] [Google Scholar]
  16. Y.C. Fung. Biomechanics. Springer-Verlag, New-York, 1993. [Google Scholar]
  17. M.S. Gee, W.N. Procopio, S. Makonnen, M.D. Feldman, N.W. YeildingW.M.F. Lee. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am. J. Path., 162 (2003), 183–193 [Google Scholar]
  18. R. GöddeH. Kurz. Structural and biophysical simulation of angiogenesis and vascular remodeling. Developmental Dynamics, 220 (2001), 387–401 [CrossRef] [PubMed] [Google Scholar]
  19. M. HidalgoS.G. Eckkhardt. Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute, 93 (2001), 178–193 [CrossRef] [PubMed] [Google Scholar]
  20. S. Hughes, T. Gardiner, P. Hu, L. Baxter, E. RosinovaT. Chan-Ling. Altered pericyte-endothelial relations in the rat retina during aging: Implications for vessel stability. Neurobiology of Aging, 27 (2006), 1838–1847 [CrossRef] [PubMed] [Google Scholar]
  21. Y. Izumi. Tumour biology: herceptin acts as an antiangiogenic cocktail. Nature 416 (2002), 279–280. [CrossRef] [Google Scholar]
  22. T.L. Jackson, S.R. Lubkin, J.D. Murray. Theoretical analysis of conjugate localization in two-step cancer chemotherapy. J. Math. Biol. 39 (1999), 353–376. [CrossRef] [PubMed] [Google Scholar]
  23. R.K. Jain. (2003) Molecular regulation of vessel maturation. Nat. Med., 9 (2003), 685–93 [CrossRef] [PubMed] [Google Scholar]
  24. A. Kamiya, R. Bukhari, T. Togawa. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biology. 46 (1984), 127–137. [Google Scholar]
  25. G.S. KrenzC.A. Dawson. Vessel distensibility and flow distribution in vascular trees. J. Math. Biol., 44 (2002), 360–374 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. C.C. Kumar. Targeting integrins αvβ3 and αvβ5 for blocking tumour-induced angiogenesis. Adv. Exp. Med. Biol., 476 (2000), 169–180 [PubMed] [Google Scholar]
  27. H.A. Levine, S. Pamuk, B.D. SleemanM. Nielsen-Hamilton. Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biol., 63 (2001), 801–863 [CrossRef] [PubMed] [Google Scholar]
  28. S.R. McDougall, A.R.A. Anderson, M.A.J. ChaplainJ.A. Sherratt. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64 (2002), 673–702 [CrossRef] [PubMed] [Google Scholar]
  29. S.R. McDougall, A.R.A. AndersonM.A.J. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol., 241 (2006), 564–589 [CrossRef] [PubMed] [Google Scholar]
  30. J.A. Madri, B.M. Pratt. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34 (1986), 85–91. [PubMed] [Google Scholar]
  31. M.R. Mancuso et al.Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Investigation, 116 (2006), 2610–2621 [CrossRef] [Google Scholar]
  32. S. Morikawa, P. Baluk, T. Kaidoh, A. Haskell, R.K. JainD.M. McDonald. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Path., 160 (2002), 985–1000 [Google Scholar]
  33. L.L. Munn. Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discovery Today, 8 (2003), 396–403 [CrossRef] [PubMed] [Google Scholar]
  34. N. Paweletz, M. Knierim. Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9 (1989), 197–242. [CrossRef] [PubMed] [Google Scholar]
  35. A.R. Pries, T.W. SecombP. Gaehtgens. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res., 32 (1996), 654–667 [PubMed] [Google Scholar]
  36. A.R. Pries, T.W. SecombP. Gaehtgens. Structural adaptation and stability of microvascular networks: theory and simulation. Am. J. Physiol., 275 (1998), H349–H360 [PubMed] [Google Scholar]
  37. A.R. Pries, B. ReglinT.W. Secomb. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am. J. Physiol., 281 (2001), H1015–H1025 [Google Scholar]
  38. A.R. Pries, B. ReglinT.W. Secomb. Structural adaptation of vascular networks: role of the pressure response. Hypertension, 38 (2001), 1476–1479 [CrossRef] [PubMed] [Google Scholar]
  39. A. Quarteroni, M. TuveriA. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci., 2 (2000), 163–197 [CrossRef] [Google Scholar]
  40. S. Rafil. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Reviews Cancer, 2 (2002), 826–835. [CrossRef] [PubMed] [Google Scholar]
  41. C. Rouget. Memoire sur le developpement, la structure et les proprietes physiologiques des capillaires sanguins et lymphatiques. Arch. Physiol. Norm. Pathol., 5 (1873), 603–663 [Google Scholar]
  42. T.W. Secomb. Mechanics of blood flow in the microcirculation. In “Biological Fluid Dynamics.” eds. C.P. Ellington and T.J. Pedley. Company of Biologists, Cambridge, 1995, pp. 305-321. [Google Scholar]
  43. G.I. Schoefl. Studies of inflammation III. Growing capillaries: Their structure and permeability. Virchows Arch. Path. Anat., 337 (1963), 97–141 [CrossRef] [Google Scholar]
  44. M.M. Sholley, G.P. Ferguson, H.R. Seibel, J.L. MontourJ.D. Wilson. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest., 51 (1984), 624–634 [PubMed] [Google Scholar]
  45. A. Stéphanou, S.R. McDougall, A.R.A. AndersonM.A.J. Chaplain. Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comp. Model., 41 (2005), 1137–1156 [CrossRef] [Google Scholar]
  46. A. Stéphanou, S.R. McDougall, A.R.A. AndersonM.A.J. Chaplain. Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis. Math. Comp. Model., 44 (2005), 96–123 [Google Scholar]
  47. M.D. SternlichtZ. Werb. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 17 (2001), 463–516 [CrossRef] [PubMed] [Google Scholar]
  48. G.M. Tozer, C. KanthouB.C. Baguley. Disrupting tumour blood vessels. Nature Reviews Cancer, 5 (2005), 423–433 [CrossRef] [PubMed] [Google Scholar]
  49. L. Yan, M.A. Moses, S. Huang, D. Ingber (2000) Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells. J. Cell Sci., 113 (2000), 3979–3987. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.