Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 163 - 202
Published online 03 February 2010
  1. T. Alarcon, H.M. ByrneP.K. Maini. A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225 (2003), 257–274 [CrossRef] [PubMed]
  2. A.R.A. AndersonM.A.J. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol., 60 (1998), 857–899 [CrossRef] [PubMed]
  3. A. Armulik, A. Abramsson, C. Betsholtz. (2005). Endothelial/pericyte interactions. Circulation Research, 97 (2005), 512–523 [CrossRef] [PubMed]
  4. D.H. AusprunkJ. Folkman. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res., 14 (1977), 53–65 [CrossRef] [PubMed]
  5. R.G. Bagley. Pericytes from human non-small cell lung carcinomas: An attractive target for anti-angiogenic therapy. Microvascular Res., 71 (2006), 163–174 [CrossRef]
  6. J.W. Baish, Y. Gazit, D.A. Berk, M. Nozue, L.T. BaxterR.K. Jain. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res., 51 (1996), 327–346 [CrossRef] [PubMed]
  7. L.E. Benjamin, I. HemoE. Keshet. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development, 125 (1998), 1591–1598 [PubMed]
  8. D. Bray. Cell Movements. New-York: Garland Publishing, 1992.
  9. R.A. Brekken, P.E. Thorpe. Vascular endothelial growth factor and vascular targeting of solid tumors. 21 (2001), 4221–4229.
  10. C.F. Chantrain, P. Henriet, S. Jodele, H. Emonard, O. Feron, P.J. Courtoy, Y.A. DeClerck, E. Marbaix (2006). Mechanisms of pericyte recruitment in tumour angiogenesis: A new role for metalloproteinases. European J. Cancer, 42 (2006), 310–318 [CrossRef]
  11. M.A.J. ChaplainG. Lolas. Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activator system. Math. Mod. Meth. Appl. Sci., 11 (2005), 1685–1734
  12. M. Ciofalo, M.W. Collins, T.R. Hennessy. “Microhydrodynamics phenomena in the circulation.” In: Nanoscale fluid dynamics in physiological processes: A review study. WIT Press, Southampton, 1999, pp 219–236.
  13. G.E. Davis, K.A. Pintar Allen, R. SalazarS.A. Maxwell. Matrix metalloproteinase-1 and –9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J. Cell Sci., 114 (2000), 917–930
  14. A.W. El-KarehT.W. Secomb Theoretical models for drug delivery to solid tumours. Crit. Rev. Biomed. Eng., 25 (1997), 503–571 [PubMed]
  15. J. FolkmanM. Klagsbrun. Angiogenic factors. Science, 235 (1987), 442–447 [CrossRef] [PubMed]
  16. Y.C. Fung. Biomechanics. Springer-Verlag, New-York, 1993.
  17. M.S. Gee, W.N. Procopio, S. Makonnen, M.D. Feldman, N.W. YeildingW.M.F. Lee. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am. J. Path., 162 (2003), 183–193
  18. R. GöddeH. Kurz. Structural and biophysical simulation of angiogenesis and vascular remodeling. Developmental Dynamics, 220 (2001), 387–401 [CrossRef] [PubMed]
  19. M. HidalgoS.G. Eckkhardt. Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute, 93 (2001), 178–193 [CrossRef] [PubMed]
  20. S. Hughes, T. Gardiner, P. Hu, L. Baxter, E. RosinovaT. Chan-Ling. Altered pericyte-endothelial relations in the rat retina during aging: Implications for vessel stability. Neurobiology of Aging, 27 (2006), 1838–1847 [CrossRef] [PubMed]
  21. Y. Izumi. Tumour biology: herceptin acts as an antiangiogenic cocktail. Nature 416 (2002), 279–280. [CrossRef]
  22. T.L. Jackson, S.R. Lubkin, J.D. Murray. Theoretical analysis of conjugate localization in two-step cancer chemotherapy. J. Math. Biol. 39 (1999), 353–376. [CrossRef] [PubMed]
  23. R.K. Jain. (2003) Molecular regulation of vessel maturation. Nat. Med., 9 (2003), 685–93 [CrossRef] [PubMed]
  24. A. Kamiya, R. Bukhari, T. Togawa. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biology. 46 (1984), 127–137.
  25. G.S. KrenzC.A. Dawson. Vessel distensibility and flow distribution in vascular trees. J. Math. Biol., 44 (2002), 360–374 [CrossRef] [MathSciNet] [PubMed]
  26. C.C. Kumar. Targeting integrins αvβ3 and αvβ5 for blocking tumour-induced angiogenesis. Adv. Exp. Med. Biol., 476 (2000), 169–180 [PubMed]
  27. H.A. Levine, S. Pamuk, B.D. SleemanM. Nielsen-Hamilton. Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biol., 63 (2001), 801–863 [CrossRef] [PubMed]
  28. S.R. McDougall, A.R.A. Anderson, M.A.J. ChaplainJ.A. Sherratt. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64 (2002), 673–702 [CrossRef] [PubMed]
  29. S.R. McDougall, A.R.A. AndersonM.A.J. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol., 241 (2006), 564–589 [CrossRef] [PubMed]
  30. J.A. Madri, B.M. Pratt. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34 (1986), 85–91. [PubMed]
  31. M.R. Mancuso et al.Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Investigation, 116 (2006), 2610–2621 [CrossRef]
  32. S. Morikawa, P. Baluk, T. Kaidoh, A. Haskell, R.K. JainD.M. McDonald. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Path., 160 (2002), 985–1000
  33. L.L. Munn. Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discovery Today, 8 (2003), 396–403 [CrossRef] [PubMed]
  34. N. Paweletz, M. Knierim. Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9 (1989), 197–242. [CrossRef] [PubMed]
  35. A.R. Pries, T.W. SecombP. Gaehtgens. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res., 32 (1996), 654–667 [PubMed]
  36. A.R. Pries, T.W. SecombP. Gaehtgens. Structural adaptation and stability of microvascular networks: theory and simulation. Am. J. Physiol., 275 (1998), H349–H360 [PubMed]
  37. A.R. Pries, B. ReglinT.W. Secomb. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am. J. Physiol., 281 (2001), H1015–H1025
  38. A.R. Pries, B. ReglinT.W. Secomb. Structural adaptation of vascular networks: role of the pressure response. Hypertension, 38 (2001), 1476–1479 [CrossRef] [PubMed]
  39. A. Quarteroni, M. TuveriA. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci., 2 (2000), 163–197 [CrossRef]
  40. S. Rafil. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Reviews Cancer, 2 (2002), 826–835. [CrossRef] [PubMed]
  41. C. Rouget. Memoire sur le developpement, la structure et les proprietes physiologiques des capillaires sanguins et lymphatiques. Arch. Physiol. Norm. Pathol., 5 (1873), 603–663
  42. T.W. Secomb. Mechanics of blood flow in the microcirculation. In “Biological Fluid Dynamics.” eds. C.P. Ellington and T.J. Pedley. Company of Biologists, Cambridge, 1995, pp. 305-321.
  43. G.I. Schoefl. Studies of inflammation III. Growing capillaries: Their structure and permeability. Virchows Arch. Path. Anat., 337 (1963), 97–141 [CrossRef]
  44. M.M. Sholley, G.P. Ferguson, H.R. Seibel, J.L. MontourJ.D. Wilson. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest., 51 (1984), 624–634 [PubMed]
  45. A. Stéphanou, S.R. McDougall, A.R.A. AndersonM.A.J. Chaplain. Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comp. Model., 41 (2005), 1137–1156 [CrossRef]
  46. A. Stéphanou, S.R. McDougall, A.R.A. AndersonM.A.J. Chaplain. Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis. Math. Comp. Model., 44 (2005), 96–123
  47. M.D. SternlichtZ. Werb. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 17 (2001), 463–516 [CrossRef] [PubMed]
  48. G.M. Tozer, C. KanthouB.C. Baguley. Disrupting tumour blood vessels. Nature Reviews Cancer, 5 (2005), 423–433 [CrossRef] [PubMed]
  49. L. Yan, M.A. Moses, S. Huang, D. Ingber (2000) Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells. J. Cell Sci., 113 (2000), 3979–3987. [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.