Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 203 - 223
Published online 03 February 2010
  1. N. Ahmed, E. W. ThomsonM. A. Quinn. Epithelial - mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J. Cell. Physiol., 213 (2007), 581–588 [CrossRef] [PubMed]
  2. J. Ahmedin, T. Murray, A. Samuels, A. Ghafoor, E. WarM. J. Thun. Cancer statistics. Cancer J. Clin., 53 (2003), 5–26 [CrossRef]
  3. K. M. Burleson, R. C. Casey, K. M. Skubitz, E. Pambuccian, T. R. Oegema JrA. P. Skubitz. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynec. Oncol., 93 (2004), 170–181 [CrossRef]
  4. K. M. Burleson, M. P. Boente, S. E. ParmabuccianA. P. Skubitz. Ovarian carcinoma spheroids disaggregate on type I collagen and invade live mesothelial cell monolayers. Clin. Exp. Metastasis, 21 (2004), 685–697 [CrossRef] [PubMed]
  5. K. M. Burleson, M. P. Boente, S. E. Parmabuccian, A. P. Skubitz. Disaggregation and invasion of ovarian carcinoma ascites spheroids. J. Transl. Med., 4 (2006), 1–16. [CrossRef] [PubMed]
  6. S. A. Cannistra. Cancer of the ovary. N. Engl. J. Med. 329 (1993), 1550–1559. [CrossRef] [PubMed]
  7. R. C. Casey, K. M. Burleson, K. M. Skubitz, S. E. Parmabuccian, T. J. Oegema, L. E. RuffA. P. Skubitz. β1–integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am. J. Pathol., 159 (2001), 2071–2080 [PubMed]
  8. M. EgebladZ. Werb. New functions for the matrix metalloproteinases in cancer progression. Nature, 2 (2002), 2071–2080
  9. K. M. Feeley, M. Wells. Precursor lesions of ovarian epithelial malignancy. Histopathology, 38 (2001), 87–95. [CrossRef] [PubMed]
  10. A. Feki, P. Berardi, G. Bellingan, A. Major, K. H. Krause, P. Petignat. Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol. Hematol., 72 (2009), 1–9. [CrossRef] [PubMed]
  11. D. A. Fishman, Y. Liu, S. M. EllerbroekM. S. Stack. Lysophosphatidic acid promotes Matrix Metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res., 61 (2001), 3194–3199 [PubMed]
  12. A. Funaro, E. Ortolan, P. Bovino, N. Lo Buono, G. Nacci, E. Parrotta, E. FerreroF. Malavasi. Ectoenzymes and innate immunity: the role of human CD157 in leukocyte trafficking. Front. Biosci., 14 (2009), 929–943 [CrossRef] [PubMed]
  13. J. A. Glazier, A. Balter, N. J. Poplawski. Magnetization to morphogenesis: a brief history of the Glazier–Graner–Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, pages 79–106. Birkaüser, 2007.
  14. J. A. GlazierF. Graner Simulation of the differential adhesion driven rearrangement of biological cells. Physical. Rev. E., 47 (1993), 2128–2154 [CrossRef] [PubMed]
  15. F. GranerJ. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Letters, 69 (1992), 2013–2017 [CrossRef] [PubMed]
  16. H. G. E. Hentschel, T. Glimm, J. A. Glazier, S. A. Newman. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B (2004), 1713–1722. [CrossRef]
  17. J. M. Kelm, N. E. Timmins, C. J. Brown, M. FusseneggerL.K. Nielsen. Method for generation of homogeneous ulticellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng., 83 (2003), 173–180 [CrossRef] [PubMed]
  18. H. A. Kenny, S. Kaur, L. M. Coussens, E. Lengyel. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest. 118 (2008), 1367–1379. [CrossRef] [PubMed]
  19. K. Lessan, D. J. Aguiar, T. J. Oegema, L. SiebensonA. P. Skubitz. CD44 and β1–integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am. J. Pathol., 154 (1999), 1525–1537 [PubMed]
  20. J. S. Lowergrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, S. M. Wise, V. Cristini. Nonlinear modeling of cancer: bridging the gap between cells and tumor. Nonlinearity. In press.
  21. A. F. M. Marée, V. A. Grieneisen P. Hogeweg. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, pages 107–136. Birkaüser, Basel, Switzerland, 2007.
  22. R. M. H. MerksJ. A. Glazier. Dynamic mechanisms of blood vessel growth. Institute of Physics Publishing, 19 (2006), C1–C10
  23. R. M. H. Merks, J. A. Glazier, A. Balter, N. J. Poplawski, M. Swat. The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study. Mathematics and Biosciences in Interaction (2007), 151–167.
  24. R. M. H. MerksJ. A. Glazier. A cell-centered approach to developmental biology. Physica. A., 352 (2005), 113–130 [CrossRef]
  25. S. E. Mutsaers. Mesothelial cells: their structure, function and role in serosal repair. Respirology, 7 (2002), 171–191 [CrossRef] [PubMed]
  26. H. Naora, D. J. Montell. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer, 5 (2005), 355–366. [CrossRef] [PubMed]
  27. M. J. Niedbala, K. CrickardR. J. Bernacki. Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion. Exp. Cell. Res., 160 (1985), 499–513 [CrossRef] [PubMed]
  28. N. J. Poplawski, A. Shirinifard, M. SwatJ. A. Glazier. Simulation of single–species bacterical–biofilm growth using the Glazier–Graner–Hogeweg model and the CompuCell3D modeling environment. Math. Biosci. Eng., 5 (2008), 355–388 [MathSciNet] [PubMed]
  29. S. Patel, P. Madan, S. Getsios, M. A. BertrC. D. Maccalman. Cadherin switching in ovarian cancer progression. Int. J. Cancer., 106 (2003), 172–177 [CrossRef] [PubMed]
  30. L. PreziosiA. Tosin. Multiphase and multiscale trends in cancer modelling. Math. Model Nat. Phenomena, 4 (2009), 1–11
  31. M. L. Puiffe, C. La Page, A. Filali–Mouhim, M. Zietarska, V. Ouellet, P. N. Toniny, M. Chevrette, D. M. ProvencherA. M. Mes–Masson. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia, 9 (2007), 820–829 [CrossRef] [PubMed]
  32. N. J. SavillP. Hogeweg. Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184 (1997), 118–124
  33. K. Sawada, A. K. Mitra, A. Reza Radjabi, V. Bhaskar, E. O. Kistner, M. Tretiakova, S. Jagadeeswaran, A. Montag, A. Becker, H. A. Kenny, M. E. Peter, V. Ramakrishnan, S. D. YamadaE. Lengyel. Loss of E-cadherin promotes ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer Res., 68 (2008), 2329–2339 [CrossRef] [PubMed]
  34. M. Sawada, J. Shii, H. AkedoO. Tanizawa. An experimental model for ovarian tumor invasion of cultured mesothelial cell monolayer. Lab. Invest., 70 (1994), 333–338 [PubMed]
  35. M. Scianna, R. M. H. Merks, L. Preziosi, E. Medico. Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. J. Theor. Biol. 260 (2009), 151–160. [CrossRef] [PubMed]
  36. K. Shield, M. L. Ackl, N. AhnmedG. E. Rice. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynec. Oncol., 113 (2008), 143–148 [CrossRef]
  37. K. Shield, C. Riley, M. A. Quinn, G. E. Rice, M. L. AcklN. Ahnmed. α2β1–integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. J. Carcinog., 6 (2007), 6–11 [CrossRef] [PubMed]
  38. P. N. Skubitz, R. C. Bast Jr, E. A. Wayner, P. C. LetourneauM. S. Wilke. Expression of α6 and β4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am. J. Pathol., 148 (1996), 1445–1461 [PubMed]
  39. K. Sundfeldt. Cell–cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Molecular and Cellular Endocrinology, 202 (2003), 89–96. [PubMed]
  40. S. Yung, F. K. LiT. M. Chan. Peritoneal mesothelial cell culture and biology. Perit. Dial. Int., 26 (2006), 162–173 [PubMed]
  41. F. Wang, J. So, S. ReierstadD. A. Fishman. Vascular endothelial growth factor regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. Int. J. Cancer, 118 (2006), 879–888 [CrossRef] [PubMed]
  42. H. S. Wang, Y. Hung, C. H. Su, S. T. Peng, Y. J. Guo, M. C. Lai MC. CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (αLβ2) and VLA-4 (α4β1). Exp. Cell. Res., 304 (2005), 116–126. [CrossRef] [PubMed]
  43. Y. ZhuK. Sunfeldt. Tight junction formation in epithelial ovarian adenocarcinoma. Acta Obstetricia et Gynecologica, 86 (2007), 1011–1019 [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.