Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 1, 2010
Cell migration
Page(s) 203 - 223
DOI https://doi.org/10.1051/mmnp/20105109
Published online 03 February 2010
  1. N. Ahmed, E. W. ThomsonM. A. Quinn. Epithelial - mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J. Cell. Physiol., 213 (2007), 581–588 [CrossRef] [PubMed] [Google Scholar]
  2. J. Ahmedin, T. Murray, A. Samuels, A. Ghafoor, E. WarM. J. Thun. Cancer statistics. Cancer J. Clin., 53 (2003), 5–26 [CrossRef] [Google Scholar]
  3. K. M. Burleson, R. C. Casey, K. M. Skubitz, E. Pambuccian, T. R. Oegema JrA. P. Skubitz. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynec. Oncol., 93 (2004), 170–181 [CrossRef] [Google Scholar]
  4. K. M. Burleson, M. P. Boente, S. E. ParmabuccianA. P. Skubitz. Ovarian carcinoma spheroids disaggregate on type I collagen and invade live mesothelial cell monolayers. Clin. Exp. Metastasis, 21 (2004), 685–697 [CrossRef] [PubMed] [Google Scholar]
  5. K. M. Burleson, M. P. Boente, S. E. Parmabuccian, A. P. Skubitz. Disaggregation and invasion of ovarian carcinoma ascites spheroids. J. Transl. Med., 4 (2006), 1–16. [CrossRef] [PubMed] [Google Scholar]
  6. S. A. Cannistra. Cancer of the ovary. N. Engl. J. Med. 329 (1993), 1550–1559. [CrossRef] [PubMed] [Google Scholar]
  7. R. C. Casey, K. M. Burleson, K. M. Skubitz, S. E. Parmabuccian, T. J. Oegema, L. E. RuffA. P. Skubitz. β1–integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am. J. Pathol., 159 (2001), 2071–2080 [PubMed] [Google Scholar]
  8. M. EgebladZ. Werb. New functions for the matrix metalloproteinases in cancer progression. Nature, 2 (2002), 2071–2080 [Google Scholar]
  9. K. M. Feeley, M. Wells. Precursor lesions of ovarian epithelial malignancy. Histopathology, 38 (2001), 87–95. [CrossRef] [PubMed] [Google Scholar]
  10. A. Feki, P. Berardi, G. Bellingan, A. Major, K. H. Krause, P. Petignat. Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol. Hematol., 72 (2009), 1–9. [CrossRef] [PubMed] [Google Scholar]
  11. D. A. Fishman, Y. Liu, S. M. EllerbroekM. S. Stack. Lysophosphatidic acid promotes Matrix Metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res., 61 (2001), 3194–3199 [PubMed] [Google Scholar]
  12. A. Funaro, E. Ortolan, P. Bovino, N. Lo Buono, G. Nacci, E. Parrotta, E. FerreroF. Malavasi. Ectoenzymes and innate immunity: the role of human CD157 in leukocyte trafficking. Front. Biosci., 14 (2009), 929–943 [CrossRef] [PubMed] [Google Scholar]
  13. J. A. Glazier, A. Balter, N. J. Poplawski. Magnetization to morphogenesis: a brief history of the Glazier–Graner–Hogeweg model. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, pages 79–106. Birkaüser, 2007. [Google Scholar]
  14. J. A. GlazierF. Graner Simulation of the differential adhesion driven rearrangement of biological cells. Physical. Rev. E., 47 (1993), 2128–2154 [CrossRef] [PubMed] [Google Scholar]
  15. F. GranerJ. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Letters, 69 (1992), 2013–2017 [CrossRef] [PubMed] [Google Scholar]
  16. H. G. E. Hentschel, T. Glimm, J. A. Glazier, S. A. Newman. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B (2004), 1713–1722. [CrossRef] [Google Scholar]
  17. J. M. Kelm, N. E. Timmins, C. J. Brown, M. FusseneggerL.K. Nielsen. Method for generation of homogeneous ulticellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng., 83 (2003), 173–180 [CrossRef] [PubMed] [Google Scholar]
  18. H. A. Kenny, S. Kaur, L. M. Coussens, E. Lengyel. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Invest. 118 (2008), 1367–1379. [CrossRef] [PubMed] [Google Scholar]
  19. K. Lessan, D. J. Aguiar, T. J. Oegema, L. SiebensonA. P. Skubitz. CD44 and β1–integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am. J. Pathol., 154 (1999), 1525–1537 [PubMed] [Google Scholar]
  20. J. S. Lowergrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, S. M. Wise, V. Cristini. Nonlinear modeling of cancer: bridging the gap between cells and tumor. Nonlinearity. In press. [Google Scholar]
  21. A. F. M. Marée, V. A. Grieneisen P. Hogeweg. The Cellular Potts Model and biophysical properties of cells, tissues and morphogenesis. In A. R. A. Anderson, M. A. J. Chaplain, and K. A. Rejniak editors, Single-Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions, pages 107–136. Birkaüser, Basel, Switzerland, 2007. [Google Scholar]
  22. R. M. H. MerksJ. A. Glazier. Dynamic mechanisms of blood vessel growth. Institute of Physics Publishing, 19 (2006), C1–C10 [Google Scholar]
  23. R. M. H. Merks, J. A. Glazier, A. Balter, N. J. Poplawski, M. Swat. The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study. Mathematics and Biosciences in Interaction (2007), 151–167. [Google Scholar]
  24. R. M. H. MerksJ. A. Glazier. A cell-centered approach to developmental biology. Physica. A., 352 (2005), 113–130 [CrossRef] [Google Scholar]
  25. S. E. Mutsaers. Mesothelial cells: their structure, function and role in serosal repair. Respirology, 7 (2002), 171–191 [CrossRef] [PubMed] [Google Scholar]
  26. H. Naora, D. J. Montell. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer, 5 (2005), 355–366. [CrossRef] [PubMed] [Google Scholar]
  27. M. J. Niedbala, K. CrickardR. J. Bernacki. Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion. Exp. Cell. Res., 160 (1985), 499–513 [CrossRef] [PubMed] [Google Scholar]
  28. N. J. Poplawski, A. Shirinifard, M. SwatJ. A. Glazier. Simulation of single–species bacterical–biofilm growth using the Glazier–Graner–Hogeweg model and the CompuCell3D modeling environment. Math. Biosci. Eng., 5 (2008), 355–388 [MathSciNet] [PubMed] [Google Scholar]
  29. S. Patel, P. Madan, S. Getsios, M. A. BertrC. D. Maccalman. Cadherin switching in ovarian cancer progression. Int. J. Cancer., 106 (2003), 172–177 [CrossRef] [PubMed] [Google Scholar]
  30. L. PreziosiA. Tosin. Multiphase and multiscale trends in cancer modelling. Math. Model Nat. Phenomena, 4 (2009), 1–11 [Google Scholar]
  31. M. L. Puiffe, C. La Page, A. Filali–Mouhim, M. Zietarska, V. Ouellet, P. N. Toniny, M. Chevrette, D. M. ProvencherA. M. Mes–Masson. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia, 9 (2007), 820–829 [CrossRef] [PubMed] [Google Scholar]
  32. N. J. SavillP. Hogeweg. Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol., 184 (1997), 118–124 [Google Scholar]
  33. K. Sawada, A. K. Mitra, A. Reza Radjabi, V. Bhaskar, E. O. Kistner, M. Tretiakova, S. Jagadeeswaran, A. Montag, A. Becker, H. A. Kenny, M. E. Peter, V. Ramakrishnan, S. D. YamadaE. Lengyel. Loss of E-cadherin promotes ovarian cancer metastasis via α5-integrin, which is a therapeutic target. Cancer Res., 68 (2008), 2329–2339 [CrossRef] [PubMed] [Google Scholar]
  34. M. Sawada, J. Shii, H. AkedoO. Tanizawa. An experimental model for ovarian tumor invasion of cultured mesothelial cell monolayer. Lab. Invest., 70 (1994), 333–338 [PubMed] [Google Scholar]
  35. M. Scianna, R. M. H. Merks, L. Preziosi, E. Medico. Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. J. Theor. Biol. 260 (2009), 151–160. [CrossRef] [PubMed] [Google Scholar]
  36. K. Shield, M. L. Ackl, N. AhnmedG. E. Rice. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynec. Oncol., 113 (2008), 143–148 [CrossRef] [Google Scholar]
  37. K. Shield, C. Riley, M. A. Quinn, G. E. Rice, M. L. AcklN. Ahnmed. α2β1–integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. J. Carcinog., 6 (2007), 6–11 [CrossRef] [PubMed] [Google Scholar]
  38. P. N. Skubitz, R. C. Bast Jr, E. A. Wayner, P. C. LetourneauM. S. Wilke. Expression of α6 and β4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am. J. Pathol., 148 (1996), 1445–1461 [PubMed] [Google Scholar]
  39. K. Sundfeldt. Cell–cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Molecular and Cellular Endocrinology, 202 (2003), 89–96. [PubMed] [Google Scholar]
  40. S. Yung, F. K. LiT. M. Chan. Peritoneal mesothelial cell culture and biology. Perit. Dial. Int., 26 (2006), 162–173 [PubMed] [Google Scholar]
  41. F. Wang, J. So, S. ReierstadD. A. Fishman. Vascular endothelial growth factor regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. Int. J. Cancer, 118 (2006), 879–888 [CrossRef] [PubMed] [Google Scholar]
  42. H. S. Wang, Y. Hung, C. H. Su, S. T. Peng, Y. J. Guo, M. C. Lai MC. CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (αLβ2) and VLA-4 (α4β1). Exp. Cell. Res., 304 (2005), 116–126. [CrossRef] [PubMed] [Google Scholar]
  43. Y. ZhuK. Sunfeldt. Tight junction formation in epithelial ovarian adenocarcinoma. Acta Obstetricia et Gynecologica, 86 (2007), 1011–1019 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.