Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 1 - 4
Published online 10 March 2010
  1. O. A. ÅkerbergM. J. Chacron. Noise shaping in neural populations with global delayed feedback. Math. Model. Nat. Phenom., 5 (2010), 100–124. [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  2. R. E. L. de Ville, C. S. PeskinJ. H. Spencer. Dynamics of stochastic neuronal networks and the connections to random graph theory. Math. Model. Nat. Phenom., 5 (2010), 26–66. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. D. Fairhurst, I. Tyukin, H. NijmeijerC. van Leeuwen. Observers for canonic models of coupled oscillators. Math. Model. Nat. Phenom., 5 (2010), 146–184. [Google Scholar]
  4. P. FromhertzA. Stent. Silicon–neuron junction: Capacitive stimulation of an individual neuron on a silicon chip. Phys. Rev. Lett., 75 (1995), 1670–1673. [CrossRef] [PubMed] [Google Scholar]
  5. A. Garenne, J. HenryC. O. Tarniceriu. Analysis of synchronization in a neural population by a population density approach. Math. Model. Nat. Phenom., 5 (2010), 5–25. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. N. G. HastopoulosJ. P. Donoghue. The science of neural interface systems. Annu. Rev. Neurosci., 32 (2009), 249–266. [CrossRef] [PubMed] [Google Scholar]
  7. L. R. Hochberg. Turning thought into action. New. Eng. J. Med., 359 (2008), 1175–1177. [CrossRef] [Google Scholar]
  8. S–P. Kim, J. Simeral, L. Hochberg, J. P. DonoghueM. J. Black. Neural control of computer cursor velocity be decoding cortical spiking activity by humans with tetraplegia. J. Neurol Engn., 5 (2008), 455–476. [CrossRef] [Google Scholar]
  9. T. A. Kuiken, L. A. Miller, R. D. Lipschutz, B. A. Luck, K. Stubblefield, P. A. Marasco, P. ZhouG. A. Dumanian. Targeted reinervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet, 369 (2007), 371–380. [CrossRef] [PubMed] [Google Scholar]
  10. J. MaJ. Wu. Patterns, memory and periodicity in two–neuron delayed recurrent inhibitory loops. Math. Model. Nat. Phenom., 5 (2010), 67–99. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. J. Milton, P. Jung. Epilepsy as a dynamic disease. Springer, New York, 2003. [Google Scholar]
  12. J. Milton, J. Foss. Oscillations and multistability in delayed feedback control. In: Case Studies in Mathematical Modeling: Ecology, physiology and cell biology (H. G. Othmer, F. R. Adler, M. A. Lewis, J. C. Dallon, eds). Prentice Hall, Upper Saddle River, NJ, 1997, pp. 179–198. [Google Scholar]
  13. J. Milton, P. Naik, C. ChanS. A. Campbell. Indecision in neural decision making models. Math. Model. Nat. Phenom., 5 (2010), 125–145. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. L. Modolo, R. Edwards, J. Campagnaud, B. BhattacharyaA. Beuter. Past, present and future of brain stimulation. Math. Model. Nat. Phenom., 5 (2010), 185–207. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. M. M. Monti, A. Vanhaudenhuyse, M. R. Coleman, M. Boly, J. D. Pickard, L. Tshibanda, A. M. OwenS. Laureys. Willful modulation of brain activity in disorders of consciousness. New Eng. J. Med., 362 (2010), 579–589. [Google Scholar]
  16. I. OsorioM. G. Frei. Real–time detection, quantification, warning, and control of epileptic seizures: The foundations for a scientific epileptology. Epilepsy Behav., 16 (2009), 391–396. [CrossRef] [PubMed] [Google Scholar]
  17. P. M. Pardalos, J. C. Sackellares, P. R. Carney, L. D. Iasemidis, eds. Quantitative Neuroscience: Models, algorithms, diagnostics and therapeutic applications. Kluwer Academic Publications, New York, 2004. [Google Scholar]
  18. A. A. Sharp, M. B. O’Neil, L. F. AbbottE. Marder. The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci., 16 (1993), 389–394. [CrossRef] [PubMed] [Google Scholar]
  19. W. Singer. A versatile code for the definition of relations?. Neuron, 24 (1999), 49–65. [CrossRef] [PubMed] [Google Scholar]
  20. L. Stark. Environmental clamping of biological systems: Pupil servomechanism. J. Opt. Soc. Amer., 52 (1962), 925–930. [CrossRef] [Google Scholar]
  21. P. A. Tass. Phase Resetting in Medicine and Biology: Stochastic modelling and data analysis. Springer Series in Synergetics, New York, 1999. [Google Scholar]
  22. Y. Yarom. Rhythmogenesis in a hybrid system interconnecting an olivary neuron to an analog network of coupled oscillators. Neurosci., 44 (1991), 263–275. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.