Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 5 - 25
DOI https://doi.org/10.1051/mmnp/20105201
Published online 10 March 2010
  1. O. Bennani, G. Chauvet, P. Chauvet, J.M. Dupont, F. Jouen. A hierarchical modeling approach of hippocampus local circuit. J. Integr. Neurosci., 9 (2009), 49–76. [CrossRef] [Google Scholar]
  2. G.A. Chauvet. The use of representation and formalism in a theoretical approach to integrative neuroscience. J. Integr. Neurosci., 4 (2005), 291–312. [CrossRef] [PubMed] [Google Scholar]
  3. C. Dejean, C.E. Gross, B. Bioulac, T. Boraud. Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J. Neurophysiol., 100 (2008), 385–396. [CrossRef] [PubMed] [Google Scholar]
  4. O. Faugeras, F. GrimbertJ.-J. Slotine. Absolute stability and complete synchronization in a class of neural fields models. SIAM J. Appl. Math., 61 (2008), No. 1, 205-250. [CrossRef] [Google Scholar]
  5. F. C. Hoppensteadt, E. Izhikevich. Weakly connected neural networks. Springer-Verlag, New York, 1997. [Google Scholar]
  6. E. M. Izhikevich. Dynamical Systems in Neuroscience: The geometry of excitability and bursting. The MIT Press, 2007. [Google Scholar]
  7. E. M. Izhikevich. Phase equations for relaxation oscillators. SIAM J. Appl. Math., 60 (2000), 1789-1804. [CrossRef] [MathSciNet] [Google Scholar]
  8. E.M. Izhikevich. Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw, 15 (2004), 1063–1070. [CrossRef] [PubMed] [Google Scholar]
  9. N. Koppel, G.B. Ermentrout. Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. Handbook of Dynamical Systems, 2 (2002), 3–54. [CrossRef] [Google Scholar]
  10. G. S. Medvedev, N. Koppel. Synchronization and transient dynamics in the chains of electrically coupled Fitzhugh-Nagumo oscillators. SIAM J. Appl. Math., 60 (2001), No. 5, 1762–1801. [CrossRef] [Google Scholar]
  11. C. Meunier, I. Segev. Playing the devil’s advocate: is the Hodgkin-Huxley model useful?. Trends Neurosci., 25 (2002), 558–563. [CrossRef] [PubMed] [Google Scholar]
  12. J. Modolo. Modélisation et analyse mathématique des effets de la stimulation cérébrale profonde dans la maladie de Parkinson. Thêse 2008. [Google Scholar]
  13. J. Modolo, A. Garenne, J. Henry, A. Beuter. Development and validation of a neural population model based on the dynamics of discontinuous membrane potential neuron model. J. Integr. Neurosci., 6 (2007), No. 4, 625–656. [CrossRef] [PubMed] [Google Scholar]
  14. J. Modolo, J. HenryA. Beuter. Dynamics of the subthalamo-pallidal complex in Parkinson’s Disease during deep brain stimulation. J. Biol. Phys., 34 (2008), 351–366. [Google Scholar]
  15. J. Modolo, E. Mosekilde, A. Beuter, New insights offered by a computational model of deep brain stimulation. J. Physiol. Paris, 101 (2007), 56–63. [CrossRef] [PubMed] [Google Scholar]
  16. D. Serre. Systemes de lois the conservation I. Hyperbolicité, entropies, ondes de choc. Diederot Editeur, Paris, 1996. [Google Scholar]
  17. J.H. Sheeba, A. Stefanovska, P.V. McClintock. Neuronal synchrony during anesthesia: a thalamocortical model. Biophys. J., 95 (2008), 2722–2727. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.