Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 5 - 25
DOI https://doi.org/10.1051/mmnp/20105201
Published online 10 March 2010
  1. O. Bennani, G. Chauvet, P. Chauvet, J.M. Dupont, F. Jouen. A hierarchical modeling approach of hippocampus local circuit. J. Integr. Neurosci., 9 (2009), 49–76. [CrossRef]
  2. G.A. Chauvet. The use of representation and formalism in a theoretical approach to integrative neuroscience. J. Integr. Neurosci., 4 (2005), 291–312. [CrossRef] [PubMed]
  3. C. Dejean, C.E. Gross, B. Bioulac, T. Boraud. Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J. Neurophysiol., 100 (2008), 385–396. [CrossRef] [PubMed]
  4. O. Faugeras, F. GrimbertJ.-J. Slotine. Absolute stability and complete synchronization in a class of neural fields models. SIAM J. Appl. Math., 61 (2008), No. 1, 205-250. [CrossRef]
  5. F. C. Hoppensteadt, E. Izhikevich. Weakly connected neural networks. Springer-Verlag, New York, 1997.
  6. E. M. Izhikevich. Dynamical Systems in Neuroscience: The geometry of excitability and bursting. The MIT Press, 2007.
  7. E. M. Izhikevich. Phase equations for relaxation oscillators. SIAM J. Appl. Math., 60 (2000), 1789-1804. [CrossRef] [MathSciNet]
  8. E.M. Izhikevich. Which model to use for cortical spiking neurons?. IEEE Trans Neural Netw, 15 (2004), 1063–1070. [CrossRef] [PubMed]
  9. N. Koppel, G.B. Ermentrout. Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. Handbook of Dynamical Systems, 2 (2002), 3–54. [CrossRef]
  10. G. S. Medvedev, N. Koppel. Synchronization and transient dynamics in the chains of electrically coupled Fitzhugh-Nagumo oscillators. SIAM J. Appl. Math., 60 (2001), No. 5, 1762–1801. [CrossRef]
  11. C. Meunier, I. Segev. Playing the devil’s advocate: is the Hodgkin-Huxley model useful?. Trends Neurosci., 25 (2002), 558–563. [CrossRef] [PubMed]
  12. J. Modolo. Modélisation et analyse mathématique des effets de la stimulation cérébrale profonde dans la maladie de Parkinson. Thêse 2008.
  13. J. Modolo, A. Garenne, J. Henry, A. Beuter. Development and validation of a neural population model based on the dynamics of discontinuous membrane potential neuron model. J. Integr. Neurosci., 6 (2007), No. 4, 625–656. [CrossRef] [PubMed]
  14. J. Modolo, J. HenryA. Beuter. Dynamics of the subthalamo-pallidal complex in Parkinson’s Disease during deep brain stimulation. J. Biol. Phys., 34 (2008), 351–366.
  15. J. Modolo, E. Mosekilde, A. Beuter, New insights offered by a computational model of deep brain stimulation. J. Physiol. Paris, 101 (2007), 56–63. [CrossRef] [PubMed]
  16. D. Serre. Systemes de lois the conservation I. Hyperbolicité, entropies, ondes de choc. Diederot Editeur, Paris, 1996.
  17. J.H. Sheeba, A. Stefanovska, P.V. McClintock. Neuronal synchrony during anesthesia: a thalamocortical model. Biophys. J., 95 (2008), 2722–2727. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.