Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 26 - 66
DOI https://doi.org/10.1051/mmnp/20105202
Published online 10 March 2010
  1. L. F. AbbottC. van Vreeswijk. Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E, 48 (1993), No. 2, 1483–1490. [CrossRef] [Google Scholar]
  2. M. Abramowitz, I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, Washington, D.C., 1964. [Google Scholar]
  3. N. Alon, J. H. Spencer. The probabilistic method. Wiley & Sons Inc., Hoboken, NJ, 2008. [Google Scholar]
  4. F. Apfaltrer, C. LyD. Tranchina. Population density methods for stochastic neurons with realistic synaptic kinetics: Firing rate dynamics and fast computational methods. Network-computation in Neural Systems, 17 (2006), No. 4, 373–418. [CrossRef] [Google Scholar]
  5. M. Bennett, M. F. Schatz, H. RockwoodK. Wiesenfeld. Huygens’s clocks. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), No. 2019, 563–579. [CrossRef] [MathSciNet] [Google Scholar]
  6. Béla Bollobás. Random graphs. Cambridge Studies in Advanced Mathematics, Vol. 73, Cambridge University Press, Cambridge, 2001. [Google Scholar]
  7. P. C. BressloffS. Coombes. Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Phys. Rev. Lett., 81 (1998), No. 10, 2168–2171. [CrossRef] [Google Scholar]
  8. N. BrunelV. Hakim. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comp., 11 (1999), No. 7, 1621–1671. [CrossRef] [PubMed] [Google Scholar]
  9. J. BuckE. Buck. Mechanism of rhythmic synchronous flashing of fireflies, Science 159 (1968), No. 3821, 1319–1327. [CrossRef] [PubMed] [Google Scholar]
  10. D. Cai, L. Tao, A. V. RanganD. W. McLaughlin. Kinetic theory for neuronal network dynamics. Comm. Math. Sci., 4 (2006), No. 1, 97–127. [Google Scholar]
  11. D. Cai, L. Tao, M. ShelleyD. W. McLaughlin. An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc. Nat. Acad. Sci. USA, 101 (2004), No. 20, 7757–7762. [CrossRef] [Google Scholar]
  12. S. R. Campbell, D. L. L. WangC. Jayaprakash. Synchrony and desynchrony in integrate-and-fire oscillators. Neur. Comp., 11 (1999), No. 7, 1595–1619. [CrossRef] [PubMed] [Google Scholar]
  13. J. H. E. Cartwright, V. M. Eguíluz, E. Hernández-GarcíaO. Piro. Dynamics of elastic excitable media. Int. J. Bif. Chaos, 9 (1999), No. 11, 2197–2202. [CrossRef] [Google Scholar]
  14. C. A. Czeisler, E. Weitzman, M. C. Moore-Ede, J. C. ZimmermanR. S. Knauer. Human sleep: its duration and organization depend on its circadian phase. Science 210 (1980), No. 4475, 1264–1267. [CrossRef] [PubMed] [Google Scholar]
  15. M. de Sousa Vieira. Chaos and synchronized chaos in an earthquake model. Phys. Rev. Lett., 82 (1999), No. 1, 201–204. [CrossRef] [Google Scholar]
  16. R. E. L. DeVille, C. S. Peskin. Synchrony and asynchrony in a fully stochastic neural network. Bull. Math. Bio., 70 (2008), No. 6, 1608–1633. [CrossRef] [Google Scholar]
  17. B. Doiron, J. RinzelA. Reyes. Stochastic synchronization in finite size spiking networks. Phys. Rev. E (3), 74 (2006), No. 3, 030903 [CrossRef] [MathSciNet] [Google Scholar]
  18. P. ErdősA. Rényi. On random graphs. I. Publ. Math. Debrecen, 6 (1959), 290–297. [MathSciNet] [Google Scholar]
  19. P. ErdősA. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61. [Google Scholar]
  20. G. B. ErmentroutJ. Rinzel. Reflected waves in an inhomogeneous excitable medium. SIAM J. Appl. Math., 56 (1996), No. 4, 1107–1128. [CrossRef] [MathSciNet] [Google Scholar]
  21. W. GerstnerJ. L. van Hemmen. Coherence and incoherence in a globally-coupled ensemble of pulse-emitting units. Phys. Rev. Lett., 71 (1993), No. 3, 312–315. [CrossRef] [PubMed] [Google Scholar]
  22. L. Glass, A. L. Goldberger, M. CourtemancheA. Shrier. Nonlinear dynamics, chaos and complex cardiac arrhythmias. Proc. Roy. Soc. London Ser. A, 413 (1987), No. 1844, 9–26. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. R. GuevaraL. Glass. Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Bio. 14 (1982), No. 1, 1–23. [CrossRef] [Google Scholar]
  24. D. HanselH. Sompolinsky. Synchronization and computation in a chaotic neural network. Phys. Rev. Lett., 68 (1992), No. 5, 718–721. [CrossRef] [PubMed] [Google Scholar]
  25. E. Haskell, D. Q. NykampD. Tranchina. Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size. Network-Computation in Neural Systems, 12 (2001), No. 2, 141–174. [Google Scholar]
  26. C. Huygens. Horoloquium oscilatorium. Parisiis, Paris, 1673. [Google Scholar]
  27. R. Kapral, K. Showalter (eds.). Chemical waves and patterns. Springer, 1994. [Google Scholar]
  28. B. W. Knight. Dynamics of encoding in a population of neurons. J. Gen. Phys., 59 (1972), No. 6, 734–766. [CrossRef] [Google Scholar]
  29. Y. Kuramoto. Chemical oscillations, waves, and turbulence. Springer Series in Synergetics, Vol. 19, Springer-Verlag, Berlin, 1984. [Google Scholar]
  30. Y. Kuramoto. Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D, 50 (1991), No. 1, 15–30. [CrossRef] [Google Scholar]
  31. T. G. Kurtz. Relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys., 57 (1972), No. 7, 2976–2978. [CrossRef] [Google Scholar]
  32. T. G. Kurtz. Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Appl., 6 (1977/78), No. 3, 223–240. [CrossRef] [Google Scholar]
  33. Z.-H. LiuP.M. Hui. Collective signaling behavior in a networked-oscillator model. Phys. A, 383 (2007), No. 2, 714 [CrossRef] [Google Scholar]
  34. R. E. MirolloS. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50 (1990), No. 6, 1645–1662. [CrossRef] [MathSciNet] [Google Scholar]
  35. Z. Olami, H. J. S. FederK. Christensen. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett., 68 (1992), No. 8, 1244–1247. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  36. K. PakdamanD. Mestivier. Noise induced synchronization in a neuronal oscillator. Phys. D, 192 (2004), No. 1-2, 123–137. [CrossRef] [MathSciNet] [Google Scholar]
  37. C. S. Peskin. Mathematical aspects of heart physiology. Courant Institute, New York University, New York, 1975. [Google Scholar]
  38. A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, 2003. [Google Scholar]
  39. W. Senn, R. Urbanczik . Similar nonleaky integrate-and-fire neurons with instantaneous couplings always synchronize. SIAM J. Appl. Math., 61 (2000/01), No. 4, 1143–1155 (electronic). [MathSciNet] [Google Scholar]
  40. A. Shwartz, A. Weiss. Large deviations for performance analysis. Chapman & Hall, London, 1995. [Google Scholar]
  41. L. Sirovich. Dynamics of neuronal populations: eigenfunction theory; some solvable cases. Network-computation in Neural Systems, 14 (2003), No. 2, 249–272. [CrossRef] [Google Scholar]
  42. L. Sirovich, A. OmrtagB. W. Knight. Dynamics of neuronal populations: The equilibrium solution. SIAM J. Appl. Math., 60 (2000), No. 6, 2009–2028. [CrossRef] [MathSciNet] [Google Scholar]
  43. S. Strogatz. Sync: The emerging science of spontaneous order. Hyperion, 2003. [Google Scholar]
  44. C Sulem, P.-L. Sulem. The nonlinear Schrödinger equation. Applied Mathematical Sciences, Vol. 139, Springer-Verlag, New York, 1999. [Google Scholar]
  45. R. Temam, A. Miranville. Mathematical modeling in continuum mechanics. Cambridge University Press, Cambridge, 2005. [Google Scholar]
  46. D. Terman, N. KopellA. Bose. Dynamics of two mutually coupled slow inhibitory neurons. Phys. D, 117 (1998), No. 1-4, 241–275. [CrossRef] [MathSciNet] [Google Scholar]
  47. M. Tsodyks, I. MitkovH. Sompolinsky. Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Phys. Rev. Lett., 71 (1993), No. 8, 1280–1283. [CrossRef] [PubMed] [Google Scholar]
  48. J. J. Tyson, C. I. Hong, C. D. ThronB. Novak. A Simple Model of Circadian Rhythms Based on Dimerization and Proteolysis of PER and TIM. Biophys. J., 77 (1999), No. 5, 2411–2417. [CrossRef] [PubMed] [Google Scholar]
  49. J. J. TysonJ. P. Keener. Singular perturbation theory of traveling waves in excitable media (a review). Phys. D, 32 (1988), No. 3, 327–361. [CrossRef] [MathSciNet] [Google Scholar]
  50. C. van Vreeswijk, L. AbbottG. Ermentrout. When inhibition not excitation synchronizes neural firing. J. Comp. Neurosci., 1 (1994), No. 4, 313–322. [CrossRef] [PubMed] [Google Scholar]
  51. C. van VreeswijkH. Sompolinsky. Chaotic balance state in a model of cortical circuits. Neur. Comp., 10 (1998), No. 6, 1321–1372. [CrossRef] [PubMed] [Google Scholar]
  52. A. T. Winfree. The geometry of biological time. Interdisciplinary Applied Mathematics, Vol. 12, Springer-Verlag, New York, 2001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.