Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 67 - 99
DOI https://doi.org/10.1051/mmnp/20105203
Published online 10 March 2010
  1. C. A. Bares, M. S. Suster, J. ShenB. L. McNaughton. Multistability of cognitive maps in the hippocampus of old rats. Nature, 388, 272-275 (1997). [CrossRef] [PubMed] [Google Scholar]
  2. A. Beuter, J. G. Milton, C. Labrie, L. Glass. Complex motor dynamics and control in multi-loop negative feedback systems. Proc IEEE Systems Man Cybern. 899-902. (1989). [CrossRef] [Google Scholar]
  3. R. M. BorisyukA. Kirillov. Bifurcation analysis of a neural network model. Biological Cybernetics, 66 319-325 (1992). [CrossRef] [PubMed] [Google Scholar]
  4. C. Canavier, D. Baxter, J. ClarkJ. Byrne. Multiple modes of activity in a neuron model suggest a novel mechanism for the effects of neuromodulators. J. Neurophysiol., 72, 872-882 (1994). [PubMed] [Google Scholar]
  5. C. C. Chow, J. A. White, J. RittN. Kopell. Frequency control in synchronized networks of inhibitory neurons. Neural Comput., 5, 407-420 (1998). [Google Scholar]
  6. D. Cotreras, A. Destexhe, T. J. SejnowskiM. Steraide. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science, 274, 771-774 (1996). [CrossRef] [PubMed] [Google Scholar]
  7. G. B. ErmentroutN. Kopell. Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc. Nat. Acad. Sci., 95, 1259-1264 (1998). [CrossRef] [Google Scholar]
  8. J. Foss, A. Longtin, B. MensourJ. Milton. Multistability and delayed recurrent loops. Phys. Rev. Lett., 76, 708-711 (1996). [CrossRef] [PubMed] [Google Scholar]
  9. J. Foss, F. MossJ. Milton. Noise, multistability, and delayed recurrent loops. Phys. Rev. E 55, 4536-4543 (1997). [CrossRef] [Google Scholar]
  10. J. Foss, J. Milton. Multistability in recurrent neural loops arising from delay. J. Neurophysiol., 84(2) 975-985 (2000). [PubMed] [Google Scholar]
  11. M. J. GutnickD. A. Prince. Thalamocortical relay neurons: antidromic invasion of spikes from a cortical epileptogenic focus. Science, 176, 424-426 (1972). [CrossRef] [PubMed] [Google Scholar]
  12. A. C. Guyton. Textbook of medical physiology. Saunders, Toronto, 1976. [Google Scholar]
  13. J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., 79, 2554-2558 (1982). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. J. Hopfield. Neurons with grades response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci., 81, 3088-3092 (1984). [CrossRef] [Google Scholar]
  15. N. Kopell, G. B. Ermentrout, M. A. WhittingtonR. D. Traub. Gamma rhythms and beta rhythms have different synchronization properties. PNAS, 97, 1867-1872 (2000). [CrossRef] [Google Scholar]
  16. N. Kopell, D. Pervouchine, H. G. Rotstein, T. Netoff, M. Whittington, T. Gloveli. Multiple rhythms and switches in the nervous system. In press. [Google Scholar]
  17. J. MaJ. Wu. Multistability in spiking neuron models of delayed recurrent neural loops. Neural Comput., 19, 2124-2148 (2007). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. J. Ma, J. Wu. Transition and coexistence of periodic patterns in spiking neuron models of delayed recurrent inhibitory loops. Submitted to SIAM J. Appl. Math.. [Google Scholar]
  19. J. Milller. What is the contribution of axonal conduction delay to temporal structure in brain dynamics? 53–57. In: Oscillatory event-related brain dynamics. C. Pantev, Ed. Plenum, New York, 1994. [Google Scholar]
  20. J. Milton. Epilepsy: Multistability in a dynamic disease. In: Self-organized biological dynamics and nonlinear control. J. Walleczek, Ed. Cambridge University Press, Cambridge, 374-386, 2000. [Google Scholar]
  21. J. Milton. Insights into seizure propagation from axonal conduction times. In: Epilepsy as a dynamic disease. J. Milton, P. Jung, Eds. New York. Springer-Verlag 15-23 (2002). [Google Scholar]
  22. M. Morita. Associative memory with non-monotone dynamics. Neural Networks, 6, 115-123 (1993). [CrossRef] [Google Scholar]
  23. M. Proctor, K. Gale. Basal Ganglia and Brainstem Anatomy and Physiology, In: Epilepsy: A comprehensive textbook. J. Engel, T. A. Pedley, Eds. Philadelphia, PA: Lippincott-Raven 353-368 (1997). [Google Scholar]
  24. P. A. Schwartzkroin, D. C. McIntyre. Limbic anatomy and physiology. In: Epilepsy: a comprehensive textbook. J. Engel, T. A. Pedley, Eds. Philadelphia, PA: Lippincott-Raven 323-340 (1997). [Google Scholar]
  25. P. Tiňo, B. G. HorneC. L. Giles. Attractive periodic sets in discrete-time recurrent networks with emphasis on fixed-point stability and bifurcations in two-neuron networks. Neural Comput., 13, 1379-1414 (2001). [CrossRef] [PubMed] [Google Scholar]
  26. R.D. Traub, R. Miles. Neuronal networks of the hippocampus. Cambridge University Press, New York, 1991. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.