Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 100 - 124
DOI https://doi.org/10.1051/mmnp/20105204
Published online 10 March 2010
  1. O. Ávila ÅkerbergM.J. Chacron. Noise shaping in neural populations. Phys. Rev. E, 79 (2009), 011904. [CrossRef] [Google Scholar]
  2. S. Bahar, J.W. Kantelhardt, A. Neiman, H.H.A. Rego, D.F. Russell, L. Wilkens, A. Bunde and F. Moss. Long range temporal anti-correlations in paddlefish electroreceptors. Europhys. Lett., 56 (2001), 454–460. [CrossRef] [Google Scholar]
  3. A. BorstF. Theunissen. Information theory and neural coding. Nat. Neurosci. 2 (1999), 947–957. [CrossRef] [PubMed] [Google Scholar]
  4. V. Braitenberg, A. Schüz. Anatomy of the Cortex. Springer, Berlin, 1991. [Google Scholar]
  5. A. Bulsara, P. Hänggi, F. Marchesoni, F. MossM. Shlesinger. Special Issue for Proceedings of The Nato Advanced Research WorkshopStochastic Resonance in Physics and Biology. J. Stat. Phys., 70 (1993), 1–2. [CrossRef] [Google Scholar]
  6. R.S. Cajal. Histologie du système nerveux de l’Homme et des vertébrés. Paris, Maloine, 1909. [Google Scholar]
  7. M.J. Chacron, A. Longtin, M. St-HilaireL. Maler. Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Phys. Rev. Lett., 85 (2000), 1576–1579. [CrossRef] [PubMed] [Google Scholar]
  8. M.J. Chacron, L. MalerJ. Bastian. Electroreceptor neuron dynamics shape information transmission. Nat. Neurosci., 8 (2005), 673–678. [CrossRef] [PubMed] [Google Scholar]
  9. M.J. Chacron, A. LongtinL. Maler. Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J. Neurosci., 21 (2001), 5328–5343. [PubMed] [Google Scholar]
  10. M.J. Chacron, B. LindnerA. Longtin. Noise shaping by interval correlations increases information transfer. Phys. Rev. Lett., 92 (2004), 080601. [Google Scholar]
  11. M.J. Chacron, B. Lindner, A. Longtin. ISI Correlations and Information Transfer. Fluct. Noise Lett., 4 (2004) L195–L205. [CrossRef] [Google Scholar]
  12. M.J. Chacron, A. LongtinL. Maler. Delayed excitatory and inhibitory feedback shape neural information transmission. Phys. Rev. E, 72 (2005), 051917. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.J. Chacron, A. LongtinL. Maler. The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network, 14 (2003), 803–824. [CrossRef] [PubMed] [Google Scholar]
  14. M.J. Chacron, B. Doiron, L. Maler, A. LongtinJ. Bastian. Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature, 423 (2003), 77–81. [CrossRef] [PubMed] [Google Scholar]
  15. M.J. Chacron, L. MalerJ. Bastian. Feedback and feedforward control of frequency tuning to naturalistic stimuli. J. Neurosci., 25 (2005), 5521–5532. [CrossRef] [PubMed] [Google Scholar]
  16. M.J. Chacron. Nonlinear information processing in a model sensory system. J. Neurophysiol., 95 (2006), 2933–2946. [CrossRef] [PubMed] [Google Scholar]
  17. M.J. Chacron, B. LindnerA. Longtin. Threshold fatigue and information transfer. J. Comput. Neurosci., 23 (2007), 301–311. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. M.J. ChacronJ. Bastian. Population coding by electrosensory neurons. J. Neurophysiol., 99 (2008), 1825–1835. [CrossRef] [PubMed] [Google Scholar]
  19. T. Cover, J. Thomas. Elements of Information Theory, Wiley, New-York, 1991. [Google Scholar]
  20. B. Doiron, M.J. Chacron, L. Maler, A. LongtinJ. Bastian. Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature, 421 (2003), 539–543. [CrossRef] [PubMed] [Google Scholar]
  21. B. Doiron, B. Lindner, A. Longtin, L. MalerJ. Bastian. Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys. Rev. Lett., 93 (2004), 048101. [Google Scholar]
  22. L.D. Ellis, R. Krahe, C.M. Bourque, R.J. DunnM.J. Chacron. Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. J. Neurophysiol., 98 (2007), 1526–1537. [CrossRef] [PubMed] [Google Scholar]
  23. T.A. Engel, B. Helbig, D.F. Russell, L. Schimansky-GeierA.B. Neiman. Coherent stochastic oscillations enhance signal detection in spiking neurons. Phys. Rev. E, 80 (2009), 021919. [CrossRef] [Google Scholar]
  24. F. Farkhooi, M.F. Strube-BlossM.P. Nawrot. Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability. Phys. Rev. E, 79 (2009), 021905. [Google Scholar]
  25. L. Gammaitoni, P.Hänggi, P. Jung, F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70 (1998), 223–287. [CrossRef] [Google Scholar]
  26. L. Glass, M.C. Mackey. From Clocks to Chaos. Princeton Univ. Press, Princeton, 1988. [Google Scholar]
  27. J.B.M. GoenseR. Ratnam. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance. J. Comp. Physiol. A, 189 (2003), 741–759. [CrossRef] [Google Scholar]
  28. C. GrayW. Singer. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA, 86 (1989), 1698–1702. [CrossRef] [Google Scholar]
  29. N.B. Janson, A.G. Balanov, E. Schöll. Delayed Feedback as a Means of Control of Noise-Induced Motion. Phys. Rev. Lett., 93 (2004), 010601. [Google Scholar]
  30. A. V. Holden. Models of the Stochastic Activity of Neurons. Springer, Berlin, 1976. [Google Scholar]
  31. H. Hollander. The projection from the visual cortex to the lateral geniculate body (LGB). An experimental study with silver impregnation methods in the cat. Exp. Brain Res., 10 (1990), 219–235. [Google Scholar]
  32. B. HutcheonY. Yarom Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci., 23 (2000), 216–222. [CrossRef] [PubMed] [Google Scholar]
  33. E.M. Izhikevich Neural Excitability, Spiking, and Bursting. Int. J. Bif. Chaos, 10 (2000), 1171–1266. [CrossRef] [Google Scholar]
  34. H. Kashiwadani, Y.F. Sasaki, N. UchidaK. Mori. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol., 82 (1999), 1786–1792. [PubMed] [Google Scholar]
  35. Z.F. Kisvárday, K.A. Martin, T.F. Freund, Z. Maglóczky, D. WhitteridgeP. Somogyi. Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp. Brain. Res., 64 (1986), 541–552. [CrossRef] [PubMed] [Google Scholar]
  36. W.R. KlemmC.J. Sherry. Entropy as an index of the informational state of neurons. Int. J. Neurosci., 15 (1981), 171–178. [CrossRef] [PubMed] [Google Scholar]
  37. H. KornP. Faure. Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C. R. Acad. Sci. III, 324 (2003), 773–793. [Google Scholar]
  38. R. Krahe, J. BastianM.J. Chacron. Temporal processing across multiple topographic maps in the electrosensory system. J. Neurophysiol., 100 (2008), 852–867. [CrossRef] [PubMed] [Google Scholar]
  39. M.A. LebedevR.J. Nelson. High-frequency vibratory sensitive neurons in monkey primary somatosensory cortex: entrained and nonentrained responses to vibration during the performance of vibratory-cued hand movements. Exp. Brain Res., 111 (1996), 313–325. [PubMed] [Google Scholar]
  40. B. Lindner, M.J. ChacronA. Longtin. Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. Phys. Rev. E, 72 (2005), 021911. [Google Scholar]
  41. B. Lindner, B. DoironA. Longtin. Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E, 72 (2005), 061919. [Google Scholar]
  42. B. Lindner, D. Gangloff, A. LongtinJ.E. Lewis. Broadband Coding with Dynamic Synapses. J. Neurosci., 29 (2004), 2076–2087. [CrossRef] [Google Scholar]
  43. S.B. LowenM.C. Teich. Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. J. Accoust. Soc. Am., 92 (1992), 803–806. [CrossRef] [PubMed] [Google Scholar]
  44. N. LüdtkeM.E. Nelson. Short-term synaptic plasticity can enhance weak signal detectability in nonrenewal spike trains. Neural Comput., 18 (2006), 2879–2916. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  45. K. MacLeodG. Laurent. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science, 274 (1996), 976–979. [CrossRef] [PubMed] [Google Scholar]
  46. Z.F. MainenT. J. Sejnowski. Reliability of spike timing in neocortical neurons. Science, 268 (1995), 1503–1506. [CrossRef] [PubMed] [Google Scholar]
  47. L. MalerE. Mugnaini. Organization and function of feedback to the electrosensory lateral line lobe of gymnotiform fish, with emphasis on a searchlight mechanism. J. Comp. Physiol. A, 173 (1993), 667–670. [Google Scholar]
  48. L. MalerE. Mugnaini. Correlating gamma-aminobutyric circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. J. Comp. Neurol., 345 (1994), 224–252. [CrossRef] [PubMed] [Google Scholar]
  49. D.J. Mar, C.C. Chow, W. Gerstner, R.W. AdamsJ.J. Collins. Noise shaping in populations of coupled model neurons. Proc. Natl. Acad. Sci., 96 (1999), 10450–10455. [CrossRef] [Google Scholar]
  50. G. MarsatG.S. Pollack. Effect of the temporal pattern of contralateral inhibition on sound localization cues. J. Neurosci., 25 (2005), 6137–6144. [CrossRef] [PubMed] [Google Scholar]
  51. M. MattiaP. Del Giudice. Finite-size dynamics of inhibitory and excitatory interacting spiking neurons. Phys. Rev. E, 70 (2004), 052903. [CrossRef] [Google Scholar]
  52. J.W. Middleton, M.J. Chacron, B. LindnerA. Longtin. Firing statistics of a neuron model driven by long-range correlated noise. Phys. Rev. E, 68 (2003), 021920. [CrossRef] [Google Scholar]
  53. B.A. McGuire, J.P. Hornung, C.D. GilbertT.N. Wiesel. Patterns of synaptic input to layer 4 of cat striate cortex. J. Neurosci., 4 (1984), 3021–3033. [PubMed] [Google Scholar]
  54. F. Moss, L. WardW. Sannita. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol., 115 (2004), 267–281. [CrossRef] [PubMed] [Google Scholar]
  55. M.E. NelsonM.A. MacIver. Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. J. Exp. Biol., 202 (1999), 1195–1203. [PubMed] [Google Scholar]
  56. S.R. Norsworthy, R. Schreier, G. C. Temes. Delta-Sigma Data Converters. IEEE Press, Piscataway, 1997. [Google Scholar]
  57. E.M. Ostapoff, D.K. MorestS.J. Potashner. Uptake and retrograde transport of [ 3H]GABA from the cochlear nucleus to the superior olive in the guinea pig. J. Chem. Neuroanat., 3 (1990), 285–295. [PubMed] [Google Scholar]
  58. C.L. PassagliaJ.B. Troy. Information transmission rates of cat retinal ganglion cells. J. Neurophysiol., 91 (2004), 1217–1229. [PubMed] [Google Scholar]
  59. A. PototskyN. Janson. Excitable systems with noise and delay, with applications to control: Renewal theory approach. Phys. Rev. E, 77 (2008), 031113. [CrossRef] [MathSciNet] [Google Scholar]
  60. T. Prager, H.P. Lerch, L. Schimansky-GeierE. Schöll. Increase of coherence in excitable systems by delayed feedback. J. Phys. A , 40 (2007), 11045–11055. [CrossRef] [MathSciNet] [Google Scholar]
  61. R. RatnamM.E. Nelson. Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals. J. Neurosci., 20 (2000), 6672–6683. [PubMed] [Google Scholar]
  62. F. Rieke, D. Warland, R.R. de Ruyter van Steveninck, W. Bialek. Spikes: Exploring the Neural Code. MIT press, Cambridge, MA, 1996. [Google Scholar]
  63. H. Risken. The Fokker-Planck Equation. Springer, Berlin, 1996. [Google Scholar]
  64. J.C. Roddey, B. GirishJ.P. Miller. Assessing the performance of neural encoding models in the presence of noise. J. Comput. Neurosci., 8 (2000), 95–112. [CrossRef] [PubMed] [Google Scholar]
  65. S. Sadeghi, M.J. Chacron, M.C. TaylorK.E. Cullen. Neural variability, detection thresholds, and information transmission in the vestibular system. J. Neurosci., 27 (2007), 771–781. [CrossRef] [PubMed] [Google Scholar]
  66. A.M. Sillito, H.E. Jones, G.L. GersteinD.C. West. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature, 369 (1994), 479–482. [CrossRef] [PubMed] [Google Scholar]
  67. R. Shannon. The mathematical theory of communication. Bell. Syst. Tech. J., 27 (1948), 379–423. [Google Scholar]
  68. S.M. Sherman. Tonic and burst firing: dual modes of thalamocortical relay. TINS, 24 (2001), 122–126. [Google Scholar]
  69. S.M. Sherman, R.W. Guillery. The role of the thalamus in the flow of information to the cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci., 357 (2002), 1695–1708. [CrossRef] [PubMed] [Google Scholar]
  70. J. Shin. Adaptation in spiking neurons based on the noise shaping neural coding hypothesis. Neural Networks, 14 (2001), 907–919. [CrossRef] [Google Scholar]
  71. N.G. Stocks. Suprathreshold stochastic resonance in multilevel threshold systems. Phys. Rev. Lett., 84 (2000), 2310–2313. [CrossRef] [PubMed] [Google Scholar]
  72. M. Stopfer, S. Bhagavan, B.H. SmithG. Laurent. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature, 390 (1997), 70–74. [CrossRef] [PubMed] [Google Scholar]
  73. A.M. Yacomotti, M.C. Eguia, J. Aliaga, O.E. MartinezG.B. Mindlin. Interspike Time Distribution in Noise Driven Excitable Systems. Phys. Rev. Lett., 83 (1999), 292–295. [CrossRef] [Google Scholar]
  74. M.K.S. YeungS.H. Strogatz. Time Delay in the Kuramoto Model of Coupled Oscillators. Phys. Rev. Lett., 82 (1999), 648–651. [Google Scholar]
  75. K. WiesenfeldI. Satija. Noise tolerance of frequency-locked dynamics. Phys. Rev. B, 36 (1987), 2483–2492. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.