Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 125 - 145
Published online 10 March 2010
  1. S.M. Baer, T. ErneuxJ. Rinzel. The slow passage through a Hopf bifurcation: Delay, memory effects and resonance. SIAM J. Appl. Math., 49 (1989), 55–71. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. L. Beilock, T. H.Carr. On the fragility of skilled performance: What governs choking under pressure? J. Exper. Psych.: Gen., 130 (2001), 701–725. [Google Scholar]
  3. S. L. Beilock, C. A. Culp, L. E. HoltT. H. Carr. More on the fragility of performance: Choking under pressure in mathematical problem solving. J. Exp. Psych., 133 (2004), No. 4, 584–600. [Google Scholar]
  4. W. BialekM. De Weese. Random switching and optimal processing in the perception of ambiguous signals. Phys. Rev. Lett., 74 (1995), 3077–3079. [CrossRef] [PubMed] [Google Scholar]
  5. R. Bogacz, E. Brown, J. Moehlis, P. Holmes, J. D. Cohen. The physics of optimal decision making: A formal analysis of models of performance in two–alternative forced–choice tasks. Psych. Rev. (2006), 700–765. [CrossRef] [Google Scholar]
  6. A. Borsellino, A. DeMarco, A. Allazetta, S. RinseiB. Bartolini. Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik, 10 (1972), 139–144. [CrossRef] [PubMed] [Google Scholar]
  7. K. L. Briggman, H. D. I. AbarbanelW. B. Kristan Jr. Optical imaging of neuronal populations during decision–making. Science 307 (2005), 896–901. [CrossRef] [PubMed] [Google Scholar]
  8. E. Brown, J. Gao, P. Holmes, R. Bogacz, M. GilzenratJ. D. Cohen. Simple neural networks that optimize decisions. Int. J. Bifurc. Chaos, 15 (2005), No. 3, 803–826. [CrossRef] [Google Scholar]
  9. J. L. CabreraJ. G. Milton. On–off intermittency in a human balancing task. Phys. Rev. Lett., 89 (2002), 158702 [Google Scholar]
  10. P. J. Choi, L. Cai, K. FiedaX. S. Xie. A stochastic single–molecule event triggers phenotype switching of a bacterial cell. Science, 322 (2008), No. 5900, 442–446. [CrossRef] [PubMed] [Google Scholar]
  11. B. Coe, K. Tomihara, M. MatsuzawaO. Hikosaka. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision–making task. J. Neurosci., 22 (2002), 5081–5090. [PubMed] [Google Scholar]
  12. K. J. ColeD. L. Rotella. Old age impairs the use of arbitrary visual cues for predicitive control of fingertip forces during grip. Exp. Brain Res. 143 (2002), 35–41. [CrossRef] [PubMed] [Google Scholar]
  13. G. Deco, M. Pérez–Sanagustin, V. de LafuenteR. Romo. Perceptual detection as a dynamical bistability phenomenon: A neurocomputational correlate of sensation. Proc. Natl. Acad. Sci. USA, 104 (2007), 20073–20077. [CrossRef] [Google Scholar]
  14. B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems: A guide to XPPAUT for researchers and students. SIAM, Philadelphia, 2002. [Google Scholar]
  15. C. W. EurichJ. G. Milton. Noise–induced transitions in human postural sway. Phys. Rev. E, 54 (1996), 6681–6684. [CrossRef] [Google Scholar]
  16. M. Fairweather. Skill learning principles: implications for coaching practice. In: N. Cross, J. Lyle, eds, The Coaching Process: Principles and Practice for Sport. Butterworth Heinemann, New York, 1999, pp. 113–129. [Google Scholar]
  17. P. M. Fitts, M. I. Posner. Human performance. Brooks/Cole, Belmont, CA, 1967. [Google Scholar]
  18. J. Foss, A. Longtin, B. MensourJ. G. Milton. Multistability and delayed recurrent loops. Phys. Rev. Lett., 76 (1996), 708–711. [CrossRef] [PubMed] [Google Scholar]
  19. J. Foss, F. MossJ. Milton. Noise, multistability, and delayed recurrent loops. Phys. Rev. E, 55 (1997), 4536–4543. [CrossRef] [Google Scholar]
  20. W. J. FreemanW. S. Schneider. Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology, 19 (1982), 44–56. [CrossRef] [PubMed] [Google Scholar]
  21. P. W. Glimcher, C. F. Camerer, E. Fehr, R. A. Poldrack, eds. Neuroeconomics: Decision–making and the Brain. Academic Press, New York, 2009. [Google Scholar]
  22. J. Gotman. Measurement of small time differences between EEG channels: method and application to epileptic seizure propagation. Electroencephalogr. Clin. Neurophysiol., 79 (1983), 403–412. [Google Scholar]
  23. C. Grotta–Ragazzo, K. PakdamanC. P. Malta. Metastability for delayed differential equations. Phys. Rev. E., 60 (1999), 6230–6233. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. D. Hatfield, A. J. Haufler, T.–M. HungT. W. Spalding. Electroencephalographic studies of skilled psychomotor performance. J. Clin. Neurophysiol., 21 (2004), 144-156. [CrossRef] [PubMed] [Google Scholar]
  25. B. D. Hatfield, C. H. Hillman. The psychophysiology of sport: a mechanistic understanding of the psychology of superior performance. In: Handbook of Sport Psychology (R. N. Singer, H. A. Hausenblas, C. M. Janelle, eds). Wiley & Sons, New York, 2001, pp. 362–386. [Google Scholar]
  26. M. JeannerodJ. Decety. Mental motor imagery: a window into the representational stages of action. Curr. Opin. Neurobiol., 5 (1995), 727–732. [Google Scholar]
  27. J. N. KimM. N. Shadlen Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience, 2 (1999), 176–185. [CrossRef] [PubMed] [Google Scholar]
  28. V. B. Kolmanovskii, V. R. Nosov, V. R. Stability of Functional Differential Equations. Academic Press, London, 1986. [Google Scholar]
  29. P. Kruse, M. Stadler, eds. Ambiguity in Mind and Nature: Multistable cognitive phenomena. Springer, New York, 1995. [Google Scholar]
  30. D. S. LevineP. S. Prueitt. Modeling some effects of frontal lobe damage – novelty and preservation. Neural Net. 2 (1989), 103–116. [CrossRef] [Google Scholar]
  31. J. Losson, M. C. Mackeyand A. Longtin Solution multistability in first order nonlinear delay differential equations. Chaos 3 (1993), 167–176. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  32. M. E. Mazurek, J. D. Roitman, J. DitterichM. N. Shadlen. A role for neural integrators in perceptual decision making. Cereb. Cortex, 13 (2003), 1257–1269. [CrossRef] [PubMed] [Google Scholar]
  33. R. Miller. What is the contribution of axonal conduction delay to temporal structure in brain dynamics?. In: Oscillatory Event–related Brain Dynamics (C. Pantev, ed). Plenum Press: New York, 1994, pp. 53–57. [Google Scholar]
  34. B. Milner. Some effects of frontal lobectomy in man. In: The frontal granular cortex and behavior (J. Warren, K. Akert, eds). McGraw–Hill: New York, 1964, pp. 313–334. [Google Scholar]
  35. J. Milton, ed. Focus Issue on Bipedal Locomotion: From robots to humans. Chaos, 19 (2009). [Google Scholar]
  36. J. G. Milton, J. L. CabreraT. Ohira. Unstable dynamical systems: Delays, noise and control. EPL, 83 (2008), 48001 [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  37. J. G. Milton, S. S. Small, A. Solodkin. On the road to automatic: Dynamic aspects in the development of expertise. J. Clin. Neurophysiol., 21 (2004), no. 3, 134–143. [CrossRef] [PubMed] [Google Scholar]
  38. J. Milton, A. Solodkin, P. HlustikS. L. Small. The mind of expert motor performance is cool and focused. NeuroImage, 35 (2007), 804–813. [CrossRef] [PubMed] [Google Scholar]
  39. J. Milton, S. L. SmallA. Solodkin. Imaging motor imagery: Methodological issues related to expertise. Methods, 45 (2008), 336–341. [CrossRef] [PubMed] [Google Scholar]
  40. K. OishiT. Maeshima. Autonomic nervous system activities during motor imagery in elite athletes. J. Clin. Neurophysiol., 21 (2004), 170–179. [Google Scholar]
  41. K. Pakdaman, C. Grotta–RagazzoC. P. Malta. Transient regime duration in continuous–time neural networks with delay. Phys. Rev. E, 58 (1998), 3623–3627. [CrossRef] [Google Scholar]
  42. K. Pakdaman, C. Grotta–Ragazzo, C. P. Malta, O. ArinoJ.–F. Vibert. Effect of delay on the boundary of the basin of attraction in a system of two neurons. Neural Networks, 11 (1998), 509–519. [CrossRef] [Google Scholar]
  43. M. RianiE. Simonotto. Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network approach. Phys. Rev. Lett., 72 (1994), 3120–3123. [CrossRef] [PubMed] [Google Scholar]
  44. J. RinzelS. M. Baer. Threshold for repetitive activity for a slow stimulus ramp: A memory effect and its dependence on fluctuations. Biophys. J., 54 (1988), 551–555. [CrossRef] [PubMed] [Google Scholar]
  45. A.G. Sanfey, J. K. Rilling, J. A. Aronson, L. E. NystromJ. D. Cohen. The neural basis of economic decision–making in the ultimatum game. Science, 300 (2003), 1755–1758. [CrossRef] [PubMed] [Google Scholar]
  46. J. D. Schall. Neural basis of deciding, choosing, and acting. Nat. Neurosci. 2 (2001), 33–42. [Google Scholar]
  47. B. Seymour, N. Daw, P. Dayan, T. SomgerR. Dolan. Differential encoding of losses and gains in the human straitum. J. Neurosci., 27 (2007), 4826–4831. [CrossRef] [PubMed] [Google Scholar]
  48. M. N. ShadlenW. T. Newsome. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol., 86 (2001), 1916–1936. [PubMed] [Google Scholar]
  49. G. Stépán. Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Group, Essex, 1989. [Google Scholar]
  50. G. StépánT. Insperger. Stability of time–periodic and delayed systems - a route to act–and–wait control. Annu. Rev. Control, 30 (2006), 159–168. [CrossRef] [Google Scholar]
  51. P. Takác. Domains of attraction of generic omega–limit sets for strongly monotone semi–flows. Zeitschrift fur Analysis und ihre Answendungen, 10 (1991), 275–317. [Google Scholar]
  52. A. ThielscherL. Pessoa. Neural correlates of perceptual choice and decision making during fear–disgust discrimination. J. Neurosci., 27 (2007), 2908–2917. [CrossRef] [PubMed] [Google Scholar]
  53. M. UsherJ. L.McClelland. The time course of perceptual choice: The leaky, competing accumulator model. Psychol. Rev., 108 (2001), 550–592. [CrossRef] [PubMed] [Google Scholar]
  54. X.–J. Wang. Probabilistic decisions making by slow reverberation in cortical circuits. Neuron, 36 (2002), 955–968. [CrossRef] [PubMed] [Google Scholar]
  55. D. Westen, P. S. Blagov, K. Harenski, C. KiltsS. Hamann. Neural bases of motivated reasoning: An fMRI study of emotional constraints on partisan political judgement in the 2004 U. S. presidential election. J. Cog. Neuroscience, 18 (2006), No. 11, 1947–1958. [Google Scholar]
  56. K.–F. WongX.–J. Wang. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci., 26 (2006), 1314–1328. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.