Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 2, 2010
Mathematics and neuroscience
Page(s) 146 - 184
DOI https://doi.org/10.1051/mmnp/20105206
Published online 10 March 2010
  1. H.D.I. Abarbanel, D.R. Crevling, R. Farsian, M. Kostuk. Dynamical State and Parameter Estimation. SIAM J. Applied Dynamical Systems, 8 (2009), No. 4, 1341-1381. [Google Scholar]
  2. P. AchardE. Schutter. Complex parameter landscape for a comples neuron model. PLOS Computational Biology, 2 (2006), No. 7, 794–804. [Google Scholar]
  3. G. BastinM. Gevers. Stable adaptive observers for nonlinear time-varying systems. IEEE Trans. on Automatic Control, 33 (1988), No. 7, 650–658. [CrossRef] [Google Scholar]
  4. R. BorisyukY. Kazanovich. Oscillations and waves in the models of interactive neural populations. Biosystems, 86 (2006), No. 1–3, 53–62. [CrossRef] [PubMed] [Google Scholar]
  5. D. Brewer, M. Barenco, R. Callard, M. HubankJ. Stark. Fitting ordinary differential equations to short time course data. Philosophical Transactions of The Royal Society A, 366 (2008), No. 1865, 519–544. [Google Scholar]
  6. C. Cao, A.M. AnnaswamyA. Kojic. Parameter convergence in nonlinearly parametrized systems. IEEE Trans. on Automatic Control, 48 (2003), No. 3, 397–411. [CrossRef] [Google Scholar]
  7. R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1 (1961), 445–466. [Google Scholar]
  8. A.N. Gorban. Basic types of coarse-graining. In A.N. Gorban, N. Kazantzis, I.G. Kevrekidis, H.C. Ottinger, and C. Theodoropoulos, editors. Model Reduction and Coarse–Graining Approaches for Multiscale Phenomena, Springer, (2006), 117–176. [Google Scholar]
  9. J.L. Hindmarsh, R.M. Rose. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond., B 221 (1984), No. 1222, 87–102. [Google Scholar]
  10. A.L. HodgkinA.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117 (1952), 500–544. [CrossRef] [PubMed] [Google Scholar]
  11. A. Ilchman. Universal adaptive stabilization of nonlinear systems. Dyn. and Contr., (1997), No. 7, 199–213. [Google Scholar]
  12. A. Isidori.Nonlinear control systems II.Springer–Verlag, second edition, 1999. [Google Scholar]
  13. E. M. Izhikevich. Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press, 2007. [Google Scholar]
  14. E. M. IzhikevichG. M. Edelman. Large-scale model of mammalian thalamocortical systems. Proc. of Nat. Acad. Sci., 105 (2008), 3593–3598. [Google Scholar]
  15. Y. KazanovichR. Borisyuk. An oscillatory neural model of multiple object tracking. Neural Computation, 18 (2006), No. 6, 1413–1440. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. C. Koch. Biophysics of Computation. Information Processing in Signle Neurons. Oxford University Press, 2002. [Google Scholar]
  17. G. Kreisselmeier. Adaptive obsevers with exponential rate of convergence. IEEE Trans. Automatic Control, AC-22 (1977), 2–8. [CrossRef] [MathSciNet] [Google Scholar]
  18. W. LinC. Qian. Adaptive control of nonlinearly parameterized systems: The smooth feedback case. IEEE Trans. Automatic Control, 47 (2002), No. 8, 1249–1266. [CrossRef] [Google Scholar]
  19. L. Ljung. System Identification: Theory for the User. Prentice-Hall, 1999. [Google Scholar]
  20. L. Ljung. Perspectives in system identification. In Proceedings of the 17-th IFAC World Congress on Automatic Control, (2008), 7172–7184. [Google Scholar]
  21. A. Loria, E. Panteley. Uniform exponential stability of linear time-varying systems: revisited. Systems and Control Letters, 47 (2007), No. 1, 13–24. [Google Scholar]
  22. A.M. Lyapunov. The general problem of the stability of motion. Int. Journal of Control, 55 (1992), No. 3. [Google Scholar]
  23. R. Marino. Adaptive observers for single output nonlinear systems. IEEE Trans. Automatic Control, 35 (1990), No. 9, 1054–1058. [CrossRef] [Google Scholar]
  24. R. Marino, P. Tomei. Global adaptive observers for nonlinear systems via filtered transformations. IEEE Trans. Automatic Control, 37 (1992), No. 8, 1239–1245. [Google Scholar]
  25. R. Marino, P.Tomei. Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Trans. Automatic Control, 40 (1995), No.7, 1300–1304. [CrossRef] [Google Scholar]
  26. J. Milnor. On the concept of attractor. Commun. Math. Phys., 99 (1985), 177–195. [CrossRef] [Google Scholar]
  27. A. P. Morgan, K. S. Narendra. On the stability of nonautonomous differential equations Formula with skew symmetric matrix B(t). SIAM J. Control and Optimization, 37 (1977), No. 9, 1343–1354. [Google Scholar]
  28. C. MorrisH. Lecar. Voltage oscillatins in the barnacle giant muscle fiber. Biophysics J., 35 (1981), 193–213. [Google Scholar]
  29. K. S. Narendra, A. M. Annaswamy. Stable Adaptive systems. Prentice–Hall, 1989. [Google Scholar]
  30. H. Nijmeijer, A. van der Schaft. Nonlinear Dynamical Control Systems. Springer–Verlag, 1990. [Google Scholar]
  31. A. Prinz, C.P. BillimoriaE. Marder. Alternative to hand-tuning conductance-based models: Contruction and analysis of databases of model neurons. Journal of Neorophysiology, 90 (2003), 3998–4015. [CrossRef] [Google Scholar]
  32. I. Yu. Tyukin, D.V. Prokhorov, C. van Leeuwen. Adaptive algorithms in finite form for nonconvex parameterized systems with low-triangular structure. In Proceedings of the 8-th IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP 2004), (2004), 261–266. [Google Scholar]
  33. I.Yu. Tyukin, D. V. Prokhorov, C. van Leeuwen. Adaptation and parameter estimation in systems with unstable target dynamics and nonlinear parametrization. IEEE Transactions on Automatic Control, 52 (2007), No. 9, 1543 – 1559. [CrossRef] [Google Scholar]
  34. I.Yu. Tyukin, D.V. Prokhorov, V.A. Terekhov. Adaptive control with nonconvex parameterization. IEEE Trans. on Automatic Control, 48 (2003), No. 4, 554–567. [CrossRef] [Google Scholar]
  35. I.Yu. Tyukin, E. Steur, H. Nijmeijer, C. van Leeuwen. Non-uniform small-gain theorems for systems with unstable invariant sets. SIAM Journal on Control and Optimization, 47 (2008), No. 2, 849–882. [CrossRef] [MathSciNet] [Google Scholar]
  36. I.Yu. Tyukin, E. Steur, H. Nijmeijer, C. van Leeuwen. Adaptive observers and parametric identification for systems in non-canonical adaptive observer form. (2009), preprint available at http://arxiv.org/abs/0903.2361. [Google Scholar]
  37. W. van Geit, E. de ShutterP. Achard. Automated neuron model optimization techniques: a review. Biol. Cybern, 99 (2008), 241–251. [CrossRef] [PubMed] [Google Scholar]
  38. V.B. Kazantsev, V.I. Nekorkin, V.I. Makarenko,R. Llinas. Self-referential phase reset based on inferior olive oscillator dynamics. Proceedings of National Academy of Science, 101 (2004), No.52, 18183–18188. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.