Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 173 - 190
Published online 28 April 2010
  1. P.H. Chavanis. A stochastic keller-segel model of chemotaxis. Commun. Nonlinear Sci Numer Simulat. 15 (2010), 60-70. [CrossRef]
  2. Y.Z. Choi, Z.A. Wang. Prevention of blow up by fast diffusion in chemotaxis., J. Math. Anal. Appl., 362 (2010), 553-564. [CrossRef] [MathSciNet]
  3. D. Kaiser. Cell-cell interactions. Prokaryotes, 1 (2006), 221-245. [CrossRef]
  4. M. Eisenbach. Chemotaxis. Imperial College Press, London, 2004.
  5. T. Hillen, K. Painter. A users guide to PDE models for chemotaxis. J. Math. Biol., 57 (2009), 183-217. [CrossRef] [MathSciNet] [PubMed]
  6. T. Hillen, K. Painter. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math., 26 (2001), 280-301. [CrossRef] [MathSciNet]
  7. T. Höfer, J.A. Sherratt, P.K. Maini. Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B., 259 (1995), 249-257. [CrossRef]
  8. D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: I. Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. [MathSciNet]
  9. D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: II. Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. [MathSciNet]
  10. E.F. Keller, L.A. Segel. Initiation of slime mold aggregation viewd as an instability. J. Theor. Biol., 26 (1970), 399-415. [CrossRef] [PubMed]
  11. H. Kuiper, L. Dung. Global attractors for cross-diffusion systems on domains of arbitrary dimensions. Rocky Mountain J. Math., 37 (2007), No 5, 1645-1668. [CrossRef] [MathSciNet]
  12. P. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. In: Progress in Nonlinear Diffusion Equations and Their Application., 64 (2005): 273-290. [CrossRef]
  13. P.M. Lushnikov, N. Chen, M. Alber. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E., 78 (2008), 061904. [CrossRef]
  14. J. Murray, Mathematical biology: an introduction. Third edition, Springer, 2002.
  15. S. Childress, J.K Percus. Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237. [CrossRef] [MathSciNet]
  16. T. Kowalczyk. Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl., 305 (2005), 566-588. [CrossRef] [MathSciNet]
  17. W.I. Neuman. The long-time behavior of the solution to a non-linear diffusion problem in population genetics and combustion. J. Theor. Biol., 104 (1985), 472-484.
  18. P. Painter, T. Hillen. Volume-filling and quorum-sensing in models for chemosensitive move- ment. Can. Appl. Math. Quart., 10 (2002), No 4, 501-543.
  19. K. Painter, J. A. Sherratt. Modelling the movement of interacting cell populations. J. Theor. Biol., 225 (2003), 327-339. [CrossRef] [PubMed]
  20. B. Perthame. Transport equations in biology. Birkhäuser, Basel, 2007.
  21. Peter Pivonka.Personal communication. 2009.
  22. A. Okubo, Diffusion and Ecological problems: Mathematical Models. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
  23. A. Okubo. Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys., 22 (1986), 1-94. [CrossRef] [PubMed]
  24. N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, Oxford, 1997.
  25. H.G. Othmer, A. Stevens. Aggregation, blowup and collapse: The ABC of taxis in reinforced random walks. SIAM J. Appl. Math., 57 (1997), 1044-1081. [CrossRef] [MathSciNet]
  26. Z.A. Wang, T. Hillen. Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos., 17 (2007), 037108, 13 pages. [CrossRef] [MathSciNet] [PubMed]
  27. S.S. Willard, P.N. Devreotes. Signalling pathways mediating chemotaxis in the social amoeba, dictyostelium discoideum. Euro. J. Cell. Biol., 85 (2006), 897-904. [CrossRef]
  28. D. Wrzosek. Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Analysis., 59 (2004), 1293-1310. [MathSciNet]
  29. D. Wrzosek. Long time behavior of solutions to a chemotaxis model with volume filling effects. Proc. R. Soc. Edinburgh A: Math., 136 (2006), 431-444. [CrossRef]
  30. D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA, DOI:10.1016/, 2010.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.