Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 173 - 190
DOI https://doi.org/10.1051/mmnp/20105311
Published online 28 April 2010
  1. P.H. Chavanis. A stochastic keller-segel model of chemotaxis. Commun. Nonlinear Sci Numer Simulat. 15 (2010), 60-70. [CrossRef] [Google Scholar]
  2. Y.Z. Choi, Z.A. Wang. Prevention of blow up by fast diffusion in chemotaxis., J. Math. Anal. Appl., 362 (2010), 553-564. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Kaiser. Cell-cell interactions. Prokaryotes, 1 (2006), 221-245. [CrossRef] [Google Scholar]
  4. M. Eisenbach. Chemotaxis. Imperial College Press, London, 2004. [Google Scholar]
  5. T. Hillen, K. Painter. A users guide to PDE models for chemotaxis. J. Math. Biol., 57 (2009), 183-217. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. T. Hillen, K. Painter. Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math., 26 (2001), 280-301. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Höfer, J.A. Sherratt, P.K. Maini. Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B., 259 (1995), 249-257. [CrossRef] [Google Scholar]
  8. D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: I. Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. [MathSciNet] [Google Scholar]
  9. D. Hortsmann. From 1970 until present: the keller-segel model in chemotaxis and its consequences: II. Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. [MathSciNet] [Google Scholar]
  10. E.F. Keller, L.A. Segel. Initiation of slime mold aggregation viewd as an instability. J. Theor. Biol., 26 (1970), 399-415. [CrossRef] [PubMed] [Google Scholar]
  11. H. Kuiper, L. Dung. Global attractors for cross-diffusion systems on domains of arbitrary dimensions. Rocky Mountain J. Math., 37 (2007), No 5, 1645-1668. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Laurençot, D. Wrzosek. A chemotaxis model with threshold density and degenerate diffusion. In: Progress in Nonlinear Diffusion Equations and Their Application., 64 (2005): 273-290. [CrossRef] [Google Scholar]
  13. P.M. Lushnikov, N. Chen, M. Alber. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E., 78 (2008), 061904. [CrossRef] [Google Scholar]
  14. J. Murray, Mathematical biology: an introduction. Third edition, Springer, 2002. [Google Scholar]
  15. S. Childress, J.K Percus. Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Kowalczyk. Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl., 305 (2005), 566-588. [CrossRef] [MathSciNet] [Google Scholar]
  17. W.I. Neuman. The long-time behavior of the solution to a non-linear diffusion problem in population genetics and combustion. J. Theor. Biol., 104 (1985), 472-484. [Google Scholar]
  18. P. Painter, T. Hillen. Volume-filling and quorum-sensing in models for chemosensitive move- ment. Can. Appl. Math. Quart., 10 (2002), No 4, 501-543. [Google Scholar]
  19. K. Painter, J. A. Sherratt. Modelling the movement of interacting cell populations. J. Theor. Biol., 225 (2003), 327-339. [CrossRef] [PubMed] [Google Scholar]
  20. B. Perthame. Transport equations in biology. Birkhäuser, Basel, 2007. [Google Scholar]
  21. Peter Pivonka.Personal communication. 2009. [Google Scholar]
  22. A. Okubo, Diffusion and Ecological problems: Mathematical Models. Springer-Verlag, Berlin-Heidelberg-New York, 1980. [Google Scholar]
  23. A. Okubo. Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophys., 22 (1986), 1-94. [CrossRef] [PubMed] [Google Scholar]
  24. N. Shigesada, K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University Press, Oxford, 1997. [Google Scholar]
  25. H.G. Othmer, A. Stevens. Aggregation, blowup and collapse: The ABC of taxis in reinforced random walks. SIAM J. Appl. Math., 57 (1997), 1044-1081. [CrossRef] [MathSciNet] [Google Scholar]
  26. Z.A. Wang, T. Hillen. Classical solutions and pattern formation for a volume filling chemotaxis model. Chaos., 17 (2007), 037108, 13 pages. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  27. S.S. Willard, P.N. Devreotes. Signalling pathways mediating chemotaxis in the social amoeba, dictyostelium discoideum. Euro. J. Cell. Biol., 85 (2006), 897-904. [CrossRef] [Google Scholar]
  28. D. Wrzosek. Global attractor for a chemotaxis model with prevention of overcrowding. Nonlinear Analysis., 59 (2004), 1293-1310. [MathSciNet] [Google Scholar]
  29. D. Wrzosek. Long time behavior of solutions to a chemotaxis model with volume filling effects. Proc. R. Soc. Edinburgh A: Math., 136 (2006), 431-444. [CrossRef] [Google Scholar]
  30. D. Wrzosek. Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. TMA, DOI:10.1016/j.na.2010.02.047, 2010. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.