Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 165 - 172
Published online 28 April 2010
  1. R. Engbert, C. Scheffczyk, R.T. Krampe, M. Rosenblum, J. Kurths, R. Kliegl. Tempo-induced transitions in polyrhythmic hand movements. Phys. Rev. E, 56 (1997), No. 5, 5823–5833. [CrossRef] [Google Scholar]
  2. B. Hao. Symbolic dynamics and characterization of complexity. Physica D, 51 (1991),161–176. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Engbert, M. Schiek, J. Kurths, R. Krampe, R. Kliegl, F. Drepper. Symbolic dynamics of physiological synchronization: Examples from bimanual movements and cardiorespiratory interaction. Nonlin. Anal. Theor. Meth. Appl., 30 (1997), No. 2, 973–984. [CrossRef] [Google Scholar]
  4. U. Schwarz, A.O. Benz, J. Kurths, A. Witt. Analysis of solar spike events by means of symbolic dynamics methods. Astron. Astrophys., 277 (1993), 215–224. [Google Scholar]
  5. X.Z. Tang, E.R. Tracy, A.D. Boozer, A. Debrauwa, R. Brown. Symbol sequence statistics in noisy chaotic signal reconstruction. Phys. Rev. E, 51 (1995), 3871–3889. [CrossRef] [Google Scholar]
  6. C.S. Daw, M.B. Kennel, C.E.A. Finney, F.T. Connolly. Observing and modeling nonlinear dynamics in an internal combustion engine. Phys. Rev. E, 57 (1998), No. 3, 2811–2819. [Google Scholar]
  7. C.S. Daw, C.E.A. Finney, E.R. Tracy. A review of symbolic analysis of experimental data. Rev. Scien. Instru., 47 (2003), No. 2, 915–930. [Google Scholar]
  8. J.R. Hotchkiss, P.S. Crooke, A.B. Adams, J.J. Marini. Implications of a biphasic two compartment model of constant flow ventilation for the clinical setting. J. Crit. Care. 9 (1994), No. 2, 114–123. [CrossRef] [PubMed] [Google Scholar]
  9. P.S. Crooke, J.D. Head, J.J. Marini, J.R. Hotchkiss. Patient-ventilator interaction: A general model for non-passive mechanical ventilation. IMA J. Math. Appl. Med. Biol., 15 (1998), 321–337. [CrossRef] [PubMed] [Google Scholar]
  10. P.S. Crooke, S. Hota, J.J. Marini, J.R. Hotchkiss. A mathematical model for carbon dioxide exchange during mechanical ventilation with TGI. Math. Comp. Mod., 29 (1999), 45–61. [CrossRef] [Google Scholar]
  11. A.B. Adams, P. Bliss, J.R. Hotchkiss. Effects of respiratory impedance on the performance of bi-level pressure ventilators. Respir. Care, 45 (2000), No. 4, 390–400. [PubMed] [Google Scholar]
  12. J.R. Hotchkiss, D.J. Dries, J.J. Marini, P.S. Crooke. Dynamical behavior during noninvasive ventilation: chaotic support? Am. J. Resp. Crit. Care Med., 163 (2001), 374–378. [Google Scholar]
  13. J.R. Hotchkiss, A.B. Adams, M.K. Stone, D.J. Dries, J.J. Marini. Oscillations and noise: inherent instability of pressure support ventilation? Am. J. Resp. Crit. Care Med., 165 (2002), 47–53. [Google Scholar]
  14. P.S. Crooke, J.R. Hotchkiss, J.J. Marini. Linear and nonlinear mathematical models for non-invasive, passive ventilation. Math. Comp. Mod., 35 (2002),1297–1313. [CrossRef] [Google Scholar]
  15. P.S. Crooke, J.R. Hotchkiss, J.J. Marini. Modeling recruitment maneuvers with a variable compliance model for pressure preset ventilation. J. Theor. Med., 43 (2002),No. 3, 197–207. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.