Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 134 - 164
DOI https://doi.org/10.1051/mmnp/20105309
Published online 28 April 2010
  1. I. Kramer. Evidence that natural immunity to breast cancer and prostate cancer exists in the majority of their risk populations is predicted by a novel, inherently saturated, ordered mutation model. Computational and Mathematical Methods in Medicine, 9 (2008), No. 1, 1-26. [CrossRef] [MathSciNet]
  2. I. Kramer. What triggers transient AIDS in the acute phase of HIV infection and chronic AIDS at the end of the incubation period?: A model analysis of HIV infection from the acute phase to chronic AIDS stage. Computational and Mathematical Methods in Medicine, 8 (2007), No. 2, 125-151. [CrossRef] [MathSciNet]
  3. I. Kramer. Calculating the number of people with Alzheimer disease in any country using saturated mutation models of brain cell loss that also predict widespread natural immunity to the disease. Computational and Mathematical Methods in Medicine, Oct. 5, 2009.
  4. A. G. Knudson, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Nat. Acad. Sci., USA, 68 (1971), No. 4, 820-823. [CrossRef]
  5. S. H. Friend, R. Bernards, S. Rogelj, R. A. Weinberg, J. M. Rapaport, D. M. Albert, T. P. Dryja. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 323 (1986), 643-646. [CrossRef] [PubMed]
  6. A. T. Yeung, B. B. Patel, X.-M. Li, S. H. Seeholzer, R. A. Coudry, H. S. Cooper, A. Bellacosa, B. M. Boman, T. Zhang, S. Litwin, E. A. Ross, P. Conrad, J. A. Crowell, L. Kopelovich, A. Knudson. One-hit effects in cancer: altered proteome of morphologically normal colon crypts in familial adenomatous polyposis. Cancer Research, 68 (2008), 7579-7586. [CrossRef] [PubMed]
  7. S. Monfardini, E. Vaccher, G. Pizzocaro. Unusual malignant tumors in 49 patients with HIV infection. AIDS, 3 (1989), 449-452. [CrossRef] [PubMed]
  8. S.C. Remick. Non-AIDS-defining cancers. Hematol Oncol Clin North Am., 10 (1996), 1203-1213. [CrossRef] [PubMed]
  9. C. Smith, S. Lilly, K.P. Mann. AIDS-related malignancies. Ann. Med., 30 (1998), 323-344. [CrossRef] [PubMed]
  10. T.P. Cooley. Non-AIDS-defining cancer in HIV-infected people. Hematol Oncol Clin North Am., 17 (2003), 889-899. [CrossRef] [PubMed]
  11. S.M. Mbulaiteye, R.J. Biggar, J.J. Goedert. Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr., 32 (2003), 527-533. [CrossRef] [PubMed]
  12. M. Frish, R.J. Biggar, E.A. Engels. AIDS-Cancer Match Registry Study Group Association of cancer with AIDS-related immunosuppression in adults. JAMA, 285 (2001), 1736-1745. [CrossRef] [PubMed]
  13. F. Stephen Hodi, S. Granter, J. Antin. Withdrawal of immunosuppression contributing to the remission of malignant melanoma: a case report. Cancer Immunity, 5 (2005), 7.
  14. N.F. Crum. Increased risk of prostate cancer among HIV-infected men. Contagion, Vol 2 (2005), No. 2, 66-70.
  15. W.G. Nelson, A.M. De Maizo, W.B. Issacs. Mechanisms of disease: prostate cancer. N Engl J Med, 349 (2003), 366-381. [CrossRef] [PubMed]
  16. E.A. Platz, A.M. De Maizo. Epidemiology of inflammation and prostate cancer. J Urol, 171 (2004), S36-S40. [CrossRef] [PubMed]
  17. A.M. De Maizo, V.L. Marchi, J.L. Epstein. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol, 155 (1999), 1985-1992. [PubMed]
  18. F. Steven Hodi, S. Granter, J. Antin. Withdrawal of immunosuppression contributing to the remission of malignant melanoma: a case report. Cancer Immunity, 5 (2005), 7.
  19. J. Ruvinsky. Are You Immune to Cancer?. DISCOVER, 27 (2006), No. 8.
  20. H. Davies. Mutations of the BRAF gene in human cancer. Nature, 417 (2002), 949-54. [CrossRef] [PubMed]
  21. M.S. Brose, P. Volpe, M. Feldman, M. Kumar, I. Rishi. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res., 62 (2002), No. 23, 6997-7000. [PubMed]
  22. K.L. Novik, J.J. Spinelli, A.C. Macarthur, K. Shumansky, P. Sipahimalani, A. Lai, J.M. Conners, R.D. Gascovne, R.P. Gallagher, A.B. Brooks-Wilson. Genetic variation in H2AFX contributes to risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev, 16 (2007), No. 6,1098-106. [CrossRef] [PubMed]
  23. H. Li, Y. Gu, B. Hukku, D.G. McLeod, T.K. Hei, J.S. Rhim. Malignant transformation of human benign prostate epithelial cells by high linear energy transfer alpha-particles. Int J. Oncol., 31 (2007), No. 3, 537-44. [PubMed]
  24. P. Lichtenstein, N.V. Holm, P.K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, K. Hemminiki,. Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 343 (2000), No. 2, 78-85. [CrossRef] [PubMed]
  25. R.K. Nam, W.W. Zhang, D.A. Loblaw, L.H. Klotz, J. Trachtenberg, M.A. Jewett, A. Stanimirovic, T.O. Davies, A. Toi, V. Venkateswaran, L. Sugar, K.A. Siminovitch, S.A. Naroid. A genome-wide association screen identifies regions on chromosomes 1q25 and 7p21 as risk loci for sporatic prostate cancer. Prostate Cancer Prostatic Dis., 2007 Sep 18, to be published.]
  26. A. Vecchione, F. Gottardo, L.G. Gomella, B. Wildemore, M. Fassan, E. Bragantini, F. Pagano, R. Baffa. Molecular genetics of prostate cancer: clinical translational opportunities. J Exp Clin Cancer Res, 26 (2007), No. 1, 25-37. [PubMed]
  27. T.M. Lane, J.C. Strefford, R.J. Yanez-Munoz, P. Purkis, E. Forsythe, T. Nia, J. Hines, Y.L. Lu, R.T. Oliver. Identification of a recurrent t(4;6) chromosome translocation in prostate cancer. J Urol, 177 (2007), No. 5, 1907-12. [CrossRef] [PubMed]
  28. O. Saramaki, T. Visakorpi. Chromal aberrations in prostate cancer. Front Biosci, 12 (2007), 3287-301. [CrossRef] [PubMed]
  29. I.M. Berguin, Y. Min, B. Wu, J. Wu, D. Perry, J.M. Cline, M.J. Thomas, T. Thornberg, G. Kulik, A. Smith, I.J. Edwards, R. DÕAgnostino, H. Zhang, H. Wu, J.X. Kang, Y.Q. Chewn. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clin Invest, 117 (2007), No. 7, 1866-75. [CrossRef] [PubMed]
  30. N. Yamamoto, M. Ueda. Therapeutic Efficacy of Vitamin D-binding Protein (Gc Protein)-derived Macrophage Activating Factor (GcMAF) for Prostate and Breast Cancers. 12th International Congress of immunology and 4th Annual Conference of FOCIS, Montreal, Canada, July 18-23, 2004.
  31. N. Yamamoto, H. Suyama, N. Yamamoto, N. Ushijima. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF). Int. J. Cancer, 122 (2008), 461-467. [CrossRef] [PubMed]
  32. N. Yamamoto, H. Suyama, N. Yamamoto. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF. Translational Oncology, 1 (2008), No. 2, 65-72. [PubMed]
  33. N. Yamamoto. Pathogenic significance of acetylgalactosaminidase Activity found in the Envelope Glycoprotein gp160 of Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 22 (2006), No. 3, 262-271. [CrossRef] [PubMed]
  34. N. Yamamoto, M. Ueda. Pathogenic significance of acetylgalactosaminidase activity found in the hemagglutinin of influenza virus. Microbes and Infection, 7 (2005), No. 4, 674-681.
  35. N. Yamamoto, M. Ueda. Eradication of HIV by Treatment of HIV-infected/AIDS Patients with Vitamin D-binding Protein Derivative. 12th International Congress of immunology and 4th Annual Conference of FOCIS, Montreal, Canada, July 18-23, 2004.
  36. G.P. Dunn, L.J. Old, R.D. Schreiber. The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity, 21 (2004), 137-148. [CrossRef] [PubMed]
  37. G.P. Dunn, A.T. Bruce, H. Ikeda, L.J. Old, R.D. Schreiber. Cancer immunoediting: from immunosurveillance to tumor escape. Nature immunology, 3 (2002), 991-998. [CrossRef] [PubMed]
  38. G.P. Dunn, C.M. Koebel, R.D. Schreiber. Interferons, immunity, and cancer immunoediting. Nat Rev Immunol., 6 (2006), No. 11, 836-48. [CrossRef] [PubMed]
  39. Q. Zhihai, T. Blankenstein. A cancer immunosurveillance controversy. Nature Immunology, 5 (2004), 3-4. [CrossRef] [PubMed]
  40. L. Zitvogel, A. Tesniere, G. Kroemer. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol., 6 (2006), No. 10, 715-27. [CrossRef] [PubMed]
  41. A.E. Germenis, V. Karanikas. Immunoepigenetics: the unseen side of cancer immunoediting. Immunol Cell Biol., 85 (2007), No. 1, 55-9. [CrossRef] [PubMed]
  42. B.A. Inman, X. Frigola, H. Dong, E.D. Kwon. Costimulation, coinhibition and cancer. Curr Cancer Drug Targets, 7 (2007), No. 1, 15-30. [CrossRef] [PubMed]
  43. C. Greenman. Patterns of somatic mutation in human cancer genomes. Nature, 446 (2007), 153-158. [CrossRef] [PubMed]
  44. P. Armitage, R. Doll. The age distribution of cancer and a multi-stage theory of carcinogenesis. British Journal of Cancer, 8 (1954), No. 1, 1-12. [CrossRef] [PubMed]
  45. F. Pompei, R. Wilson. The age distribution of cancer; the turnover at old age. Health and Environmental Risk Assessment, 7 (2001), No. 6, 1619-50. [CrossRef]
  46. P. Armitage, R. Doll. A Two-Stage Theory of Carcinogenesis in Relation to the Age Distribution of Human Cancer. Br. J. Cancer, 11 (1957), No. 2, 161-169. [PubMed]
  47. S. Moolgavkar, A. Knudson. (1981). Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst., 66, No. 6, 1037-1052. [PubMed]
  48. S.H. Moolgavkar, A. Dewanji, D.J. Venzon. (1988). A stochastic two-stage model for cancer risk assessment: I. The hazard function and the probability of tumor. Risk Anal., 8, No. 3, 383-392. [CrossRef] [PubMed]
  49. S.H. Moolgavkar, E.G. Luebeck. (1990). Two-event model for carcinogenesis: biological, mathematical, and statistical considerations. Risk Anal., 10, No. 2, 323-341. [CrossRef] [PubMed]
  50. W.F. Heidenreich, E.G. Luebeck, S.H. Moolgavkar. (1997). Some properties of the hazard function of the two-mutation clonal expansion model. Risk Anal., 17, No. 3, 391-399. [CrossRef] [PubMed]
  51. E.G. Lueback, S.H. Moolgavkar. Multistage carcinogenesis and the incidence of colorectal cancer. PNA, 99 (2002), No. 23, 15095-15100. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.