Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 134 - 164
Published online 28 April 2010
  1. I. Kramer. Evidence that natural immunity to breast cancer and prostate cancer exists in the majority of their risk populations is predicted by a novel, inherently saturated, ordered mutation model. Computational and Mathematical Methods in Medicine, 9 (2008), No. 1, 1-26. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Kramer. What triggers transient AIDS in the acute phase of HIV infection and chronic AIDS at the end of the incubation period?: A model analysis of HIV infection from the acute phase to chronic AIDS stage. Computational and Mathematical Methods in Medicine, 8 (2007), No. 2, 125-151. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Kramer. Calculating the number of people with Alzheimer disease in any country using saturated mutation models of brain cell loss that also predict widespread natural immunity to the disease. Computational and Mathematical Methods in Medicine, Oct. 5, 2009. [Google Scholar]
  4. A. G. Knudson, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Nat. Acad. Sci., USA, 68 (1971), No. 4, 820-823. [Google Scholar]
  5. S. H. Friend, R. Bernards, S. Rogelj, R. A. Weinberg, J. M. Rapaport, D. M. Albert, T. P. Dryja. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 323 (1986), 643-646. [CrossRef] [PubMed] [Google Scholar]
  6. A. T. Yeung, B. B. Patel, X.-M. Li, S. H. Seeholzer, R. A. Coudry, H. S. Cooper, A. Bellacosa, B. M. Boman, T. Zhang, S. Litwin, E. A. Ross, P. Conrad, J. A. Crowell, L. Kopelovich, A. Knudson. One-hit effects in cancer: altered proteome of morphologically normal colon crypts in familial adenomatous polyposis. Cancer Research, 68 (2008), 7579-7586. [CrossRef] [PubMed] [Google Scholar]
  7. S. Monfardini, E. Vaccher, G. Pizzocaro. Unusual malignant tumors in 49 patients with HIV infection. AIDS, 3 (1989), 449-452. [CrossRef] [PubMed] [Google Scholar]
  8. S.C. Remick. Non-AIDS-defining cancers. Hematol Oncol Clin North Am., 10 (1996), 1203-1213. [CrossRef] [PubMed] [Google Scholar]
  9. C. Smith, S. Lilly, K.P. Mann. AIDS-related malignancies. Ann. Med., 30 (1998), 323-344. [CrossRef] [PubMed] [Google Scholar]
  10. T.P. Cooley. Non-AIDS-defining cancer in HIV-infected people. Hematol Oncol Clin North Am., 17 (2003), 889-899. [CrossRef] [PubMed] [Google Scholar]
  11. S.M. Mbulaiteye, R.J. Biggar, J.J. Goedert. Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr., 32 (2003), 527-533. [CrossRef] [PubMed] [Google Scholar]
  12. M. Frish, R.J. Biggar, E.A. Engels. AIDS-Cancer Match Registry Study Group Association of cancer with AIDS-related immunosuppression in adults. JAMA, 285 (2001), 1736-1745. [CrossRef] [PubMed] [Google Scholar]
  13. F. Stephen Hodi, S. Granter, J. Antin. Withdrawal of immunosuppression contributing to the remission of malignant melanoma: a case report. Cancer Immunity, 5 (2005), 7. [Google Scholar]
  14. N.F. Crum. Increased risk of prostate cancer among HIV-infected men. Contagion, Vol 2 (2005), No. 2, 66-70. [Google Scholar]
  15. W.G. Nelson, A.M. De Maizo, W.B. Issacs. Mechanisms of disease: prostate cancer. N Engl J Med, 349 (2003), 366-381. [CrossRef] [PubMed] [Google Scholar]
  16. E.A. Platz, A.M. De Maizo. Epidemiology of inflammation and prostate cancer. J Urol, 171 (2004), S36-S40. [CrossRef] [PubMed] [Google Scholar]
  17. A.M. De Maizo, V.L. Marchi, J.L. Epstein. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol, 155 (1999), 1985-1992. [PubMed] [Google Scholar]
  18. F. Steven Hodi, S. Granter, J. Antin. Withdrawal of immunosuppression contributing to the remission of malignant melanoma: a case report. Cancer Immunity, 5 (2005), 7. [Google Scholar]
  19. J. Ruvinsky. Are You Immune to Cancer?. DISCOVER, 27 (2006), No. 8. [Google Scholar]
  20. H. Davies. Mutations of the BRAF gene in human cancer. Nature, 417 (2002), 949-54. [CrossRef] [PubMed] [Google Scholar]
  21. M.S. Brose, P. Volpe, M. Feldman, M. Kumar, I. Rishi. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res., 62 (2002), No. 23, 6997-7000. [PubMed] [Google Scholar]
  22. K.L. Novik, J.J. Spinelli, A.C. Macarthur, K. Shumansky, P. Sipahimalani, A. Lai, J.M. Conners, R.D. Gascovne, R.P. Gallagher, A.B. Brooks-Wilson. Genetic variation in H2AFX contributes to risk of non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev, 16 (2007), No. 6,1098-106. [CrossRef] [PubMed] [Google Scholar]
  23. H. Li, Y. Gu, B. Hukku, D.G. McLeod, T.K. Hei, J.S. Rhim. Malignant transformation of human benign prostate epithelial cells by high linear energy transfer alpha-particles. Int J. Oncol., 31 (2007), No. 3, 537-44. [PubMed] [Google Scholar]
  24. P. Lichtenstein, N.V. Holm, P.K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, K. Hemminiki,. Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 343 (2000), No. 2, 78-85. [CrossRef] [PubMed] [Google Scholar]
  25. R.K. Nam, W.W. Zhang, D.A. Loblaw, L.H. Klotz, J. Trachtenberg, M.A. Jewett, A. Stanimirovic, T.O. Davies, A. Toi, V. Venkateswaran, L. Sugar, K.A. Siminovitch, S.A. Naroid. A genome-wide association screen identifies regions on chromosomes 1q25 and 7p21 as risk loci for sporatic prostate cancer. Prostate Cancer Prostatic Dis., 2007 Sep 18, to be published.] [Google Scholar]
  26. A. Vecchione, F. Gottardo, L.G. Gomella, B. Wildemore, M. Fassan, E. Bragantini, F. Pagano, R. Baffa. Molecular genetics of prostate cancer: clinical translational opportunities. J Exp Clin Cancer Res, 26 (2007), No. 1, 25-37. [PubMed] [Google Scholar]
  27. T.M. Lane, J.C. Strefford, R.J. Yanez-Munoz, P. Purkis, E. Forsythe, T. Nia, J. Hines, Y.L. Lu, R.T. Oliver. Identification of a recurrent t(4;6) chromosome translocation in prostate cancer. J Urol, 177 (2007), No. 5, 1907-12. [CrossRef] [PubMed] [Google Scholar]
  28. O. Saramaki, T. Visakorpi. Chromal aberrations in prostate cancer. Front Biosci, 12 (2007), 3287-301. [CrossRef] [PubMed] [Google Scholar]
  29. I.M. Berguin, Y. Min, B. Wu, J. Wu, D. Perry, J.M. Cline, M.J. Thomas, T. Thornberg, G. Kulik, A. Smith, I.J. Edwards, R. DÕAgnostino, H. Zhang, H. Wu, J.X. Kang, Y.Q. Chewn. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clin Invest, 117 (2007), No. 7, 1866-75. [CrossRef] [PubMed] [Google Scholar]
  30. N. Yamamoto, M. Ueda. Therapeutic Efficacy of Vitamin D-binding Protein (Gc Protein)-derived Macrophage Activating Factor (GcMAF) for Prostate and Breast Cancers. 12th International Congress of immunology and 4th Annual Conference of FOCIS, Montreal, Canada, July 18-23, 2004. [Google Scholar]
  31. N. Yamamoto, H. Suyama, N. Yamamoto, N. Ushijima. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF). Int. J. Cancer, 122 (2008), 461-467. [CrossRef] [PubMed] [Google Scholar]
  32. N. Yamamoto, H. Suyama, N. Yamamoto. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF. Translational Oncology, 1 (2008), No. 2, 65-72. [PubMed] [Google Scholar]
  33. N. Yamamoto. Pathogenic significance of acetylgalactosaminidase Activity found in the Envelope Glycoprotein gp160 of Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 22 (2006), No. 3, 262-271. [CrossRef] [PubMed] [Google Scholar]
  34. N. Yamamoto, M. Ueda. Pathogenic significance of acetylgalactosaminidase activity found in the hemagglutinin of influenza virus. Microbes and Infection, 7 (2005), No. 4, 674-681. [Google Scholar]
  35. N. Yamamoto, M. Ueda. Eradication of HIV by Treatment of HIV-infected/AIDS Patients with Vitamin D-binding Protein Derivative. 12th International Congress of immunology and 4th Annual Conference of FOCIS, Montreal, Canada, July 18-23, 2004. [Google Scholar]
  36. G.P. Dunn, L.J. Old, R.D. Schreiber. The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity, 21 (2004), 137-148. [CrossRef] [PubMed] [Google Scholar]
  37. G.P. Dunn, A.T. Bruce, H. Ikeda, L.J. Old, R.D. Schreiber. Cancer immunoediting: from immunosurveillance to tumor escape. Nature immunology, 3 (2002), 991-998. [Google Scholar]
  38. G.P. Dunn, C.M. Koebel, R.D. Schreiber. Interferons, immunity, and cancer immunoediting. Nat Rev Immunol., 6 (2006), No. 11, 836-48. [CrossRef] [PubMed] [Google Scholar]
  39. Q. Zhihai, T. Blankenstein. A cancer immunosurveillance controversy. Nature Immunology, 5 (2004), 3-4. [CrossRef] [PubMed] [Google Scholar]
  40. L. Zitvogel, A. Tesniere, G. Kroemer. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol., 6 (2006), No. 10, 715-27. [Google Scholar]
  41. A.E. Germenis, V. Karanikas. Immunoepigenetics: the unseen side of cancer immunoediting. Immunol Cell Biol., 85 (2007), No. 1, 55-9. [CrossRef] [PubMed] [Google Scholar]
  42. B.A. Inman, X. Frigola, H. Dong, E.D. Kwon. Costimulation, coinhibition and cancer. Curr Cancer Drug Targets, 7 (2007), No. 1, 15-30. [CrossRef] [PubMed] [Google Scholar]
  43. C. Greenman. Patterns of somatic mutation in human cancer genomes. Nature, 446 (2007), 153-158. [CrossRef] [PubMed] [Google Scholar]
  44. P. Armitage, R. Doll. The age distribution of cancer and a multi-stage theory of carcinogenesis. British Journal of Cancer, 8 (1954), No. 1, 1-12. [Google Scholar]
  45. F. Pompei, R. Wilson. The age distribution of cancer; the turnover at old age. Health and Environmental Risk Assessment, 7 (2001), No. 6, 1619-50. [CrossRef] [Google Scholar]
  46. P. Armitage, R. Doll. A Two-Stage Theory of Carcinogenesis in Relation to the Age Distribution of Human Cancer. Br. J. Cancer, 11 (1957), No. 2, 161-169. [PubMed] [Google Scholar]
  47. S. Moolgavkar, A. Knudson. (1981). Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst., 66, No. 6, 1037-1052. [PubMed] [Google Scholar]
  48. S.H. Moolgavkar, A. Dewanji, D.J. Venzon. (1988). A stochastic two-stage model for cancer risk assessment: I. The hazard function and the probability of tumor. Risk Anal., 8, No. 3, 383-392. [CrossRef] [PubMed] [Google Scholar]
  49. S.H. Moolgavkar, E.G. Luebeck. (1990). Two-event model for carcinogenesis: biological, mathematical, and statistical considerations. Risk Anal., 10, No. 2, 323-341. [CrossRef] [PubMed] [Google Scholar]
  50. W.F. Heidenreich, E.G. Luebeck, S.H. Moolgavkar. (1997). Some properties of the hazard function of the two-mutation clonal expansion model. Risk Anal., 17, No. 3, 391-399. [CrossRef] [PubMed] [Google Scholar]
  51. E.G. Lueback, S.H. Moolgavkar. Multistage carcinogenesis and the incidence of colorectal cancer. PNA, 99 (2002), No. 23, 15095-15100. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.