Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 3, 2010
Mathematical modeling in the medical sciences
Page(s) 115 - 133
Published online 28 April 2010
  1. L. Breiman. Better subset regression using the nonnegative garrote Technometrics, 37 (1995), 373-384. [CrossRef] [MathSciNet]
  2. P. Chaurand, M.E. Sanders, R.A. Jensen, R.M. Caprioli. Profiling and imaging proteins in tissue sections by MS. Anal. Chem., 76 (2004), 86A-93A. [CrossRef]
  3. G. Chu, B. Narasimhan, R. Tibshirani, V.G. Tusher. SAM Version 1.12: user’s guide and technical document.[ tibs/SAM/]
  4. E. Candes, T. Tao. The dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35 (2007), 2313. [CrossRef] [MathSciNet]
  5. B. Efron, T. Hastie, R. Tibshirani. Least angle regression. Annals of Statistics, 32 (2004), 407-499. [CrossRef] [MathSciNet]
  6. J. Fan, R. Li. Variable selection via nonconcave penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96 (2001), 1348-1360. [CrossRef] [MathSciNet]
  7. I. Frank, J. Friedman. A statistical view of some chemometrics regression tools. Technometrics, 35 (1993), 109-148. [CrossRef]
  8. M. Gerhard, S.O. Deininger, F.M. Schleif. Statistical Classification and visualization of MALDI imaging data. CBMS’07 2007; 0-7695-2905-4/07.
  9. D.J. Graham, M.S. Wagner, D.G. Castner. Information from complexity: challenges of TOF-SIMS data interpretation. Applied surface science, 252 (2006), 6860-6868. [CrossRef]
  10. P. Hall, J.S. Marron, A. Neeman. Geometric representation of high dimension low sample size data. J. R. Statist. Soc. B, 67 (2005), 427. [CrossRef]
  11. T. Hastie, R. Tibshirani, J. Friedman. The elements of statistical learning; Data mining, inference and prediction. Springer, New York, 2001.
  12. A. E. Hoerl, R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12 (1970), 55-67. [CrossRef]
  13. J. Huang, J. Horowitz, S. Ma. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Annals Statatistics, 36 (2008), 587-613. [CrossRef]
  14. J. Huang, S. Ma, C. Zhang. Adaptive Lasso for sparse high dimensional regression models. Stat Sin, 18 (2008), 1603-1618.
  15. G.M. James, P. Radchenko, and J. Lv. DASSO: connections between the Dantzig selector and lasso. J. R. Statist. Soc. B, 71 (2009) pp. 127(C142. [CrossRef]
  16. J. Jia, B. Yu. On model selection consistency of the elastic net when pn. Tech. Report 756, Statistics, UC Berkeley, 2008.
  17. K. Knight, W. Fu. Asymptotics for Lasso-type estimators. Annals Statistics, 28 (2000), 1356-1378. [CrossRef] [MathSciNet]
  18. S. Matoba, J.G. Kang, W.D. Patino, A. Wragg, M. Boehm, O. Gavrilova, P.J. Hurley, F. Bunz, P.M. Hwang. P53 regulates mitochondrial respiration. Science, 312 (2006), 1650-1653. [CrossRef] [PubMed]
  19. S. Ma, J. Huang. Penalized feature selection and classification in bioinformatics. Brief in Bioinform., 9 (2008), 392-403. [CrossRef]
  20. A. Mayevsky. Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives. Mitochondrion, 9 (2009), 165-179. [CrossRef] [PubMed]
  21. G. McCombie, D. Staab, M. Stoeckli, R. Knochenmuss. Spatial and Spectral correlation in MALDI mass spectrometry images by clustering and multivariate analysis. Anal. Chem. 2005;77:6118-6124. [CrossRef] [PubMed]
  22. N. Meinshausen, B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37 (2009), no. 1, 246-270. [CrossRef] [MathSciNet]
  23. H. Meistermann, J.L. Norris, H.R. Aerni, D.S. Cornett, A. Friedlein, A.R. Erskine, A. Augustin, M.C. De Vera Mudry, S. Ruepp, L. Suter, H. Langen, R.M. Caprioli, A. Ducret. Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Mol Cell Proteomics, 5 (2006), 1876-1886. [CrossRef] [PubMed]
  24. E.R. Muir, I.J. Ndiour, N.A. Le Goasduff, R.A. Moffitt, Y. Liu, M.C. Sullards, A.H. Merrill, Y. Chen, M.D. Wang. Multivariate analysis of imaging mass spectrometry data. BIBE 2007 proceedings of the 7th IEEE international conference 472-479.
  25. R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Statist. Soc., Series B., 58(1), 1996, 267-288.
  26. M. Yuan, Y. Lin. On the nonnegative garrote estimator. J. R. Statist. Soc. B., 69 (2007), 143-161. [CrossRef]
  27. F. Zhang, D. Hong, S. Frappier, D.S. Cornett, R.M. Caprioli. Elastic Net Based Framework for Imaging Mass Spectrometry Data Biomarker Selection and Classification. Manuscript, 2009.
  28. H. Zhang, J. Ahn, X. Lin, C. Park. Gene selection using support vector machines with non-convex penalty. Bioinformatics, 22 (2006), 88-95. [CrossRef] [PubMed]
  29. P. Zhao, B. Yu. On model selection consistency of lasso. The Journal of Machine Learning Research, 7 (2006), 2541-2563.
  30. S. Zhou, S. Geer, P. Buhlmann. Adaptive lasso for high dimensional regression and gaussian graphical modeling. manuscript, 2009.
  31. H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101 (2006), 1418-1429. [CrossRef] [MathSciNet]
  32. H. Zou, T. Hastie. Regularization and variable selection via the elastic net. J. R. Statist. Soc., B. 67(2005), Part 2, 301-320. [CrossRef]
  33. H. Zou, H. Zhang. On the adaptive elastic-net with a diverging number of parameters. Annals of statistics, 37 (2009), 1733-1751. [CrossRef] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.