Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 158 - 174
Published online 12 May 2010
  1. A. Avila. On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators. Commun. Math. Phys., 288 (2009), 907–918. [CrossRef] [Google Scholar]
  2. J. Avron, B. Simon. Almost periodic Schrödinger operators. I. Limit periodic potentials. Commun. Math. Phys., 82 (1981), 101–120. [CrossRef] [Google Scholar]
  3. W. Craig, B. Simon. Subharmonicity of the Lyaponov index. Duke Math. J., 50:2 (1983), 551–560. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Damanik, Z. Gan. Spectral properties of limit-periodic Schrödinger operators. To appear in to appear in Discrete Contin. Dyn. Syst. Ser. S. [Google Scholar]
  5. D. Damanik, Z. Gan. Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents. J. Funct. Anal. 258:12 (2010), 4010–4025 [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Damanik, Z. Gan. Limit-periodic Schrödinger operators with uniformly localized eigenfunctions. Preprint, (arXiv:1003.1695). [Google Scholar]
  7. D. Damanik, A. Gorodetski. The spectrum of the weakly coupled Fibonacci Hamiltonian. Electron. Res. Announc. Math. Sci., 16 (2009), 23–29. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Figotin, L. Pastur. An exactly solvable model of a multidimensional incommensurate structure. Commun. Math. Phys., 95 (1984), 401–425. [CrossRef] [Google Scholar]
  9. S. Fishman, D. Grempel, R. Prange. Localization in a d-dimensional incommensurate structure. Phys. Rev. B, 29 (1984), 4272–4276. [CrossRef] [MathSciNet] [Google Scholar]
  10. Z. Gan, H. Krüger. Optimality of log Hölder continuity of the integrated density of states. To appear in Math. Nachr. [Google Scholar]
  11. S. Jitomirskaya. Continuous spectrum and uniform localization for ergodic Schrödinger operators. J. Funct. Anal., 145 (1997), 312–322. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Jitomirskaya, B. Simon. Operators with singular continuous spectrum, III. Alomost periodic Schrödinger operators. Commun. Math. Phys., 165 (1994), 201–205. [CrossRef] [Google Scholar]
  13. J. Pöschel. Examples of discrete Schrödinger operators with pure point spectrum. Commun. Math. Phys., 88 (1983), 447–463. [CrossRef] [Google Scholar]
  14. R. Prange, D. Grempel, S. Fishman. A solvable model of quantum motion in an incommensurate potential. Phys. Rev. B, 29 (1984), 6500–6512. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Ribes, P. Zalesskii. Profinite Groups. Springer-Verlag, Berlin, 2000. [Google Scholar]
  16. B. Simon. Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging, 1 (2007), No. 4, 713–772. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Wilson. Profinite Groups. Oxford University Press, New York, 1998. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.