Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 175 - 197
Published online 12 May 2010
  1. J.E. Avron, A. Raveh, B. Zur. Adiabatic quantum transport in multiply connected systems. Rev. Modern Phys., 60 (1988), No. 4, 873–915. [CrossRef] [MathSciNet]
  2. P. Exner. A duality between Schrödinger operators on graphs and certain Jacobi matrices. Ann. Inst. H. Poincaré Phys. Theor., 66 (1997), No. 4, 359–371. [MathSciNet]
  3. P. Harris. Carbon Nanotubes and Related Structures. Cambridge Univ. Press., Cambridge, 1999.
  4. A. Iantchenko, E. Korotyaev. Periodic Jacobi operators with finitely supported perturbations on the half-line. Preprint, 2009.
  5. S. Iijima. Helical microtubules of graphitic carbon. Nature, 354 (1991), 56–58. [CrossRef]
  6. E. Korotyaev. Effective masses for zigzag nanotubes in magnetic fields. Lett. Math. Phys., 83 (2008), No 1, 83–95. [CrossRef] [MathSciNet]
  7. E. Korotyaev. Resonances for Schrödinger operator with periodic plus compactly supported potentials on the half-line. Preprint, 2008.
  8. E. Korotyaev, A. Kutsenko. Zigzag nanoribbons in external electric Fields. To appear in Asympt. Anal.
  9. E. Korotyaev, A. Kutsenko. Zigzag and armchair nanotubes in external fields. To appear in Diff. Equations: Systems, Applications and Analysis. Nova Science Publishers, Inc.
  10. E. Korotyaev, I. Lobanov. Schrödinger operators on zigzag periodic graphs. Ann. Henri Poincaré, 8 (2007), 1151–1176. [CrossRef] [MathSciNet]
  11. E. Korotyaev, I. Lobanov. Zigzag periodic nanotube in magnetic field. Preprint, 2006.
  12. P. Kuchment, O. Post. On the spectra of carbon nano-structures. Commun. Math. Phys., 275 (2007), 805–826. [CrossRef]
  13. P. van Moerbeke. The spectrum of Jacobi matrices. Invent. Math., 37 (1976), No. 1, 45–81. [CrossRef] [MathSciNet]
  14. D.S. Novikov. Electron properties of carbon nanotubes in a periodic potential. Physical Rev., B 72 (2005), 235428-1-22.
  15. L. Pauling. The diamagnetic anisotropy of aromatic molecules. J. of Chem. Phys., 4 (1936), 673–677. [CrossRef]
  16. K. Pankrashkin. Spectra of Schrödinger operators on equilateral quantum graphs. Lett. Math. Phys., 77 (2006), 139–154. [CrossRef] [MathSciNet]
  17. V. Rabinovich, S. Roch. Essential spectra of difference operators on Zn-periodic graphs. J. Phys. A: Math. Theor., 40 (2007), 10109. [CrossRef]
  18. K. Ruedenberg, C.W. Scherr. Free-electron network model for conjugated systems. I. Theory. J. of Chem. Phys., 21 (1953), 1565–1581. [CrossRef]
  19. R. Saito, G. Dresselhaus, M. Dresselhaus. Physical properties of carbon nanotubes. Imperial College Press, 1998.
  20. G. Teschl. Jacobi operators and completely integrable nonlinear lattices. Providence, RI: AMS, (2000) ( Math. Surveys Monographs, V. 72.)
  21. E.B. Vinberg.A Course in Algebra. Graduate studies in Mathematics, AMS, V. 56.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.