Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 198 - 224
DOI https://doi.org/10.1051/mmnp/20105409
Published online 12 May 2010
  1. A. Beurling, J. Deny. Espaces de Dirichlet. I. Le cas élémentaire. Acta Math., 99 (1958), 203–224. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Beurling, J. Deny. Dirichlet spaces. Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 208–215. [CrossRef] [MathSciNet] [Google Scholar]
  3. N. Bouleau, F. Hirsch. Dirichlet forms and analysis on Wiener space. Volume 14 ofde Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1991. [Google Scholar]
  4. F. R. K. Chung. Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, 92, American Mathematical Society, Providence, RI, 1997. [Google Scholar]
  5. F. R. K. Chung, A. Grigoryan, S.-T. Yau. Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs. Comm. Anal. Geom., 8 (2000), No. 5, 969–1026. [MathSciNet] [Google Scholar]
  6. Y. Colin de Verdière. Spectres de graphes. Soc. Math. France, Paris, 1998. [Google Scholar]
  7. E. B. Davies. Heat kernels and spectral theory. Cambridge University press, Cambridge, 1989. [Google Scholar]
  8. E. B. Davies. Linear operators and their spectra. Cambridge Studies in Advanced Mathematics, 106. Cambridge University Press, Cambridge, 2007. [Google Scholar]
  9. J. Dodziuk. Difference Equations, isoperimetric inequality and transience of certain random walks. Trans. Amer. Math. Soc., 284 (1984), No. 2, 787–794. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Dodziuk. Elliptic operators on infinite graphs. Analysis, geometry and topology of elliptic operators, 353–368, World Sci. Publ., Hackensack, NJ, 2006. [Google Scholar]
  11. J. Dodziuk, W. S. Kendall. Combinatorial Laplacians and isoperimetric inequality. From local times to global geometry, control and physics (Coventry, 1984/85), 68–74, Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986. [Google Scholar]
  12. J. Dodziuk, V. Matthai. Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians. The ubiquitous heat kernel, 69–81, Contemp. Math., 398, Amer. Math. Soc., Providence, RI, 2006. [Google Scholar]
  13. W. Feller. On boundaries and lateral conditions for the Kolmogorov differential equations. Ann. of Math. (2), 65 (1957), 527–570. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Fujiwara. Laplacians on rapidly branching trees. Duke Math Jour., 83 (1996), No. 1, 191-202. [CrossRef] [Google Scholar]
  15. M. Fukushima, Y. Oshima, M.Takeda. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 1994. [Google Scholar]
  16. A. Grigor’yan. Analytic and geometric background of reccurrence and non-explosion of the brownian motion on riemannian manifolds. Bull. Am. Math. Soc., 36 (1999), No. 2, 135–249. [Google Scholar]
  17. S. Haeseler, M. Keller, Generalized solutions and spectrum for Dirichlet forms on graphs, preprint 2010, arXiv:1002.1040. [Google Scholar]
  18. O. Häggström, J. Jonasson, R. Lyons. Explicit isoperimetric constants and phase transitions in the random-cluster model. Ann. Probab., 30 (2002), No. 1, 443–473. [CrossRef] [MathSciNet] [Google Scholar]
  19. Y. Higuchi, T. Shirai. Isoperimetric constants of (d,f)-regular planar graphs. Interdiscip. Inform. Sci., 9 (2003), No. 2, 221–228. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. E. T. Jorgensen. Essential selfadjointness of the graph-Laplacian. J. Math. Phys., 49 (2008), No. 7, 073510. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Keller. The essential spectrum of Laplacians on rapidly branching tesselations. Math. Ann., 346 (2010), No. 1, 51–66. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Keller, D. Lenz. Dirichlet forms and stochastic completeness of graphs and subgraphs. preprint 2009, arXiv:0904.2985. [Google Scholar]
  23. M. Keller, N. Peyerimhoff. Cheeger constants, growth and spectrum of locally tessellating planar graphs. to appear in Math. Z., arXiv:0903.4793. [Google Scholar]
  24. B. Mohar. Light structures in infinite planar graphs without the strong isoperimetric property. Trans. Amer. Math. Soc., 354 (2002), No. 8, 3059–3074. [CrossRef] [MathSciNet] [Google Scholar]
  25. Z.-M. Ma and M. Röckner. Introduction to the theory of (non-symmetric) Dirichlet forms. Springer-Verlag, Berlin, 1992. [Google Scholar]
  26. B. Metzger, P. Stollmann. Heat kernel estimates on weighted graphs. Bull. London Math. Soc., 32 (2000), No. 4, 477–483. [CrossRef] [MathSciNet] [Google Scholar]
  27. G. E. H. Reuter. Denumerable Markov processes and the associated contraction semigroups onl. Acta Math., 97 (1957), 1–46. [CrossRef] [MathSciNet] [Google Scholar]
  28. K.-T. Sturm. textitAnalysis on local Dirichlet spaces. I: Recurrence, conservativeness and Lp-Liouville properties. J. Reine Angew. Math., 456 (1994), No. 173–196. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Stollmann. A convergence theorem for Dirichlet forms with applications to boundary value problems with varying domains. Math. Z., 219 (1995), No. 2, 275–287. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Stollmann, J. Voigt. Perturbation of Dirichlet forms by measures. Potential Anal. 5 (1996), No. 2, 109–138. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Urakawa. The spectrum of an infinite graph. Can. J. Math., 52 (2000), No. 5, 1057–1084. [CrossRef] [Google Scholar]
  32. A. Weber. Analysis of the physical Laplacian and the heat flow on a locally finite graph. Preprint 2008, arXiv:0801.0812. [Google Scholar]
  33. R. K. Wojciechowski. Stochastic completeness of graphs, PhD thesis, 2007. arXiv:0712.1570v2. [Google Scholar]
  34. R. K. Wojciechowski. Heat kernel and essential spectrum of infinite graphs. Indiana Univ. Math. J., 58 (2009), No. 3, 1419–1441. [CrossRef] [MathSciNet] [Google Scholar]
  35. R. K. Wojciechowski. Stochastically Incomplete Manifolds and Graphs. Preprint 2009, arXiv:0910.5636. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.