Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 225 - 255
Published online 12 May 2010
  1. G.R. Baker, X. Li and A.C. Morlet Analytic structure of 1D-transport equations with nonlocal fluxes. Physica D, 91 (1996), 349–375. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bertozzi and A. Majda. Vorticity and Incompressible Flow. Cambridge University Press, 2002. [Google Scholar]
  3. K. Bogdan, A. Stoś and P. Sztonyk. Harnack inequality for stable processes on d-sets, Studia Math., 158 (2003), 163–198. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Caffarelli and A. Vasseur. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Preprint arXiv:math / 0608447. [Google Scholar]
  5. J. Carrillo and L. Ferreira. The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations. Nonlinearity, 21, (2008), 1001–1018. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Chae and J. Lee. Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Comm. Math. Phys. 233 (2003), 297–311. [MathSciNet] [Google Scholar]
  7. Q. Chen, C. Miao and Z. Zhang. A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Comm. Math. Phys., 271, (2007), 821–838. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Constantin. Active scalars and the Euler equation. Tatra Mountains Math. Publ., 4 (1994), 25–38. [Google Scholar]
  9. P. Constantin. Energy spectrum of quasigeostrophic turbulence. Phys. Rev. Lett., 89, (2002), 184501. [CrossRef] [PubMed] [Google Scholar]
  10. P. Constantin, D. Cordoba and J. Wu. On the critical dissipative quasi-geostrophic equation. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). Indiana Univ. Math. J., 50, (2001), 97–107. [Google Scholar]
  11. P. Constantin, A. Majda and E. Tabak. Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity, 7, (1994), 1495–1533. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Constantin, G. Iyer and J. Wu. Global regularity for a modified critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J., 57, (2008), 2681–2692. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Constantin and J. Wu. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal., 30, (1999), 937–948. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Constantin and J. Wu. Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Preprint, arXiv:math / 0701592. [Google Scholar]
  15. P. Constantin and J. Wu. Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Preprint, arXiv:math / 0701594. [Google Scholar]
  16. D. Cordoba. Nonexistence of simple hyperbolic blow up for the quasi-geostrophic equation. Ann. of Math., 148, (1998), 1135–1152. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Cordoba and D. Cordoba. A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys., 249, (2004), 511–528. [Google Scholar]
  18. A. Cordoba, D. Cordoba and M. Fontelos. Formation of singularities for a transport equation with nonlocal velocity. Ann. of Math. (2), 162, (2005), 1377–1389. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete Contin. Dyn. Syst., 23, (2009), 755-764. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Dong. Higher regularity for the critical and super-critical dissipative quasi-geostrophic equations. Preprint arXiv:math / 0701826. [Google Scholar]
  21. H. Dong and D. Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Preprint arXiv:math / 0701828. [Google Scholar]
  22. H. Dong and N. Pavlovic. A regularity criterion for the dissipative quasi-geostrophic equations. Preprint arXiv:math / 07105201. [Google Scholar]
  23. H. Dong, D. Du and D. Li. Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ. Math. J., 58, (2009), 807–821. [CrossRef] [MathSciNet] [Google Scholar]
  24. I. Held, R. Pierrehumbert, S. Garner and K. Swanson. Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, (1995), 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Friedlander, N. Pavlovic and V. Vicol. Nonlinear instability for critically dissipative quasi-geostrophic equation. Preprint. [Google Scholar]
  26. N. Ju. The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Comm. Math. Phys., 255, (2005), 161–181. [CrossRef] [MathSciNet] [Google Scholar]
  27. N. Ju. Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation. Math. Ann., 334, (2006), 627–642. [CrossRef] [MathSciNet] [Google Scholar]
  28. N. Ju. Geometric constrains for global regularity of 2D quasi-geostrophic flows. J. Differential Equations, 226, (2006), 54–79. [CrossRef] [MathSciNet] [Google Scholar]
  29. N. Ju. Dissipative 2D quasi-geostrophic equation: local well-posedness, global regularity and similarity solutions. Indiana Univ. Math. J., 56, (2007), 187–206. [CrossRef] [MathSciNet] [Google Scholar]
  30. W. Feller. Introduction to Probability Theory and Applications. Vol. 2, Wiley, 1971. [Google Scholar]
  31. A. Kiselev, F. Nazarov and R. Shterenberg. On blow up and regularity in dissipative Burgers equation. Dynamics of PDE, 5, (2008), 211–240. [Google Scholar]
  32. A. Kiselev, F. Nazarov and A. Volberg. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Inventiones Math., 167, (2007), 445–453. [CrossRef] [Google Scholar]
  33. A. Kiselev and F. Nazarov. A variation on a theme of Caffarelli and Vasseur. to appear at Zapiski Nauchn. Sem. POMI. [Google Scholar]
  34. A. Kiselev and F. Nazarov. Nonlocal maximum principles for active scalars, title tentative, in preparation. [Google Scholar]
  35. D. Li and J. Rodrigo. Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation. Adv. Math., 217, (2008), 2563–2568. [CrossRef] [MathSciNet] [Google Scholar]
  36. C. Marchioro and M. Pulvirenti. Mathematical Theory of Incompressible Nonviscous Fluids. Springer-Verlag, New York 1994. [Google Scholar]
  37. C. Miao and L. Xue. Global wellposedness for a modified critical dissipative quasi-geostrophic equation, arXiv:math / 0901.1368 (2009). [Google Scholar]
  38. H. Miura. Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Comm. Math. Phys., 267, (2006), 141–157. [CrossRef] [MathSciNet] [Google Scholar]
  39. A.C. Morlet. Further properties of a continuum of model equations ith globally defined flux. J. Math. Anal. Appl., 22, (1998), 132–160. [CrossRef] [Google Scholar]
  40. N. S. Nadirashvili. Wandering solutions of the two-dimensional Euler equation. (Russian) Funkcional. Anal. i Prilozh., 25, (1991), 70–71; translation in Funct. Anal. Appl. 25, (1991), 220–221 (1992). [Google Scholar]
  41. S. Resnick. Dynamical problems in nonlinear advective partial differential equations. Ph.D. Thesis, University of Chicago, 1995. [Google Scholar]
  42. L. Smith and J. Sukhatme. Eddies and waves in a family of dispersive dynamically active scalars. Preprint arXiv:0709.2897. [Google Scholar]
  43. L. Sylvestre. Eventual regularization for the slightly supercritical quasi-geostrophic equation. Preprint arXiv:math / 0812.4901. [Google Scholar]
  44. M. Taylor. Partial Differential Equations III: Nonlinear Equations. Springer-Verlag, New York, 1997. [Google Scholar]
  45. J. Wu. The quasi-geostrophic equation and its two regularizations. Comm. Partial Differential Equations, 27, (2002), 1161–1181. [CrossRef] [MathSciNet] [Google Scholar]
  46. J. Wu. Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation. Nonlinear Anal., 67, (2007), 3013–3036. [CrossRef] [MathSciNet] [Google Scholar]
  47. J. Wu. Solutions of the 2D quasi-geostrophic equation in Hölder spaces. Nonlinear Anal., 62, (2005), 579–594. [CrossRef] [MathSciNet] [Google Scholar]
  48. J. Wu. The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity, 18, (2005), 139–154. [CrossRef] [MathSciNet] [Google Scholar]
  49. V.I. Yudovich. The loss of smoothness of the solutions of Euler equations with time. (Russian) Dinamika Sploshn. Sredy Vyp. 16, Nestacionarnye Problemy Gidrodinamiki 121 (1974), 71–78. [Google Scholar]
  50. V.I. Yudovich. On the loss of smothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid. Chaos, 10, (2000), 705–719. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.