Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 256 - 268
DOI https://doi.org/10.1051/mmnp/20105411
Published online 12 May 2010
  1. A. Avila, J. Bochi, D. Damanik. Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math. J., 146 (2009), No. 2, 253–280. [CrossRef] [MathSciNet]
  2. A. Avila, S. Jitomirskaya. The Ten Martini Problem. Ann. of Math., 170 (2009), No. 1, 303–342. [CrossRef] [MathSciNet]
  3. J. Bourgain. Positive Lyapounov exponents for most energies. Geometric aspects of functional analysis, 37–66, Lecture Notes in Math. No. 1745, Springer, Berlin, 2000.
  4. J. Bourgain. Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005.
  5. V.A. Chulaevsky, Y. G. Sinai. Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential. Comm. Math. Phys., 125 (1989), No. 1, 91–112. [CrossRef] [MathSciNet]
  6. M. Goldstein, W. Schlag. On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations. Ann. of Math., (to appear).
  7. A. Y. Gordon, S. Jitomirskaya, Y. Last, B. Simon. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math., 178 (1997), 169–183. [CrossRef] [MathSciNet]
  8. J.P. Guillement, B. Helffer, P. Treton. Walk inside Hofstadter’s butterfly. J. Phys. France, 50 (1989), 2019–2058. [CrossRef] [EDP Sciences]
  9. B. Helffer, P. Kerdelhué, J. Sjöstrand. Le papillon de Hofstadter revisité. Mém. Soc. Math. France (N.S.), No. 43 (1990), 87 pp.
  10. D. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14 (1976), 2239. [CrossRef]
  11. H. Krüger. Probabilistic averages of Jacobi operators, Comm. Math. Phys., 295 (2010), No. 3, 853–875. [CrossRef] [MathSciNet]
  12. H. Krüger. In preparation.
  13. G. Teschl. Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv. and Mon., 72, Amer. Math. Soc., Rhode Island, 2000.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.