Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 269 - 292
DOI https://doi.org/10.1051/mmnp/20105412
Published online 12 May 2010
  1. J. Alexander, R. Gardner, C. Jones. A topological invariant arising in the stability analysis of traveling waves. J. reineangew. Math., 410 (1990), 167–212.
  2. M. S. Birman, M. Z. Solomyak.Spectral theory of self-adjoint operators in Hilbert space. Reidel, Dordrecht, 1987.
  3. C. Chicone, Y. Latushkin.Evolution semigroups in dynamical systems and differential equations. Amer. Math. Soc., Providence, RI, 1999.
  4. R.A. Gardner, C. K. R. T. Jones. Traveling waves of a perturbed diffusion equation arising in a phase field model. Indiana Univ. Math. J., 39 (1989), 1197–1222. [CrossRef]
  5. F. Gesztesy, Y. Latushkin, K. A. Makarov. Evans functions, Jost functions, and Fredholm determinants. Arch. Rat. Mech. Anal., 186 (2007), 361–421. [CrossRef]
  6. F. Gesztesy, Y. Latushkin, M. Mitrea, M. Zinchenko. Non-self-adjoint operators, infinite determinants, and some applications. Russ. J. Math. Phys.,12 (2005), 443–471. [MathSciNet]
  7. F. Gesztesy, Y. Latushkin, K. Zumbrun. Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves. J. Math. Pures Appl., 90 (2008), 160–200. [CrossRef] [MathSciNet]
  8. F. Gesztesy, K. A. Makarov. (Modified ) Fredholm determinants for operators with matrix-valued semi-separable integral kernels revisited. Integral Eq. Operator Theory, 47 (2003), 457–497; Erratum. 48 (2004), 425–426. [CrossRef]
  9. I. Gohberg, S. Goldberg, M. Kaashoek. Classes of linear operators. Vol. 1. Birkhäuser, 1990.
  10. K. F. Gurski, R. Kollar, R. L. Pego. Slow damping of internal waves in a stably stratified fluid. Proc. Royal Soc. Lond. Ser. A Math. Phys. Engrg. Sci.,460 (2004), 977–994. [CrossRef]
  11. K. F. Gurski, R. L. Pego. Normal modes for a stratified viscous fluid layer. Proc. Royal Soc. Edinburgh Sect. A, 132 (2002), 611–625. [CrossRef]
  12. T. Kapitula, B. Sandstede. Edge bifurcations for near integrable systems via Evans function techniques. SIAM J. Math. Anal.,33 (2002), 1117–1143. [CrossRef] [MathSciNet]
  13. T. Kapitula, B. Sandstede. Eigenvalues and resonances using the Evans function. Discrete Contin. Dyn. Syst., 10 (2004), 857–869. [CrossRef] [MathSciNet]
  14. T. Kato. Wave operators and similarity for some non-selfadjoint operators. Math. Ann.,162 (1966), 258–279. [CrossRef] [MathSciNet]
  15. R. L. Pego, M. I. Weinstein. Eigenvalues and instabilities of solitary waves. Philos. Trans. Royal Soc. London Ser. A,340 (1992), 47–94. [CrossRef] [MathSciNet]
  16. M. Reed, B. Simon. Methods of modern mathematical physics. I: Functional analysis. Academic Press, New York, 1980.
  17. M. Reed, B. Simon.Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-adjointness. Academic Press, New York, 1975.
  18. B. Sandstede. Stability of traveling waves. In: Handbook of dynamical systems. Vol. 2. B. Hasselblatt, A. Katok (eds.). North-Holland, Elsevier, Amsterdam, 2002, pp. 983–1055.
  19. B. Simon. Trace ideals and their applications. Cambridge University Press, Cambridge, 1979.
  20. K. Zumbrun. Multidimensional stability of planar viscous shock waves. In:Advances in the Theory of Shock Waves. T.-P. Liu, H. Freistühler, A. Szepessy (eds.). Progress Nonlin. Diff. Eqs. Appls.,47, Birkhäuser, Boston, 2001, pp. 307–516.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.