Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 4, 2010
Spectral problems. Issue dedicated to the memory of M. Birman
Page(s) 293 - 316
Published online 12 May 2010
  1. G. E. Andrews, R. Askey, R. Roy. Special Functions. Cambridge University Press, 1999.
  2. Z. Cheng, J. L. Lebowitz, P. Major. On the number of lattice points between two enlarged and randomly shifted copies of an oval. Probab. Theory Rel. Fields, 100 (1994), No. 2, 253–268. [CrossRef]
  3. F. Götze. Lattice point problems and values of quadratic forms. Invent. Math., 157 (2004), No. 1, 195–226. [CrossRef] [MathSciNet]
  4. M.N. Huxley. Exponential sums and lattice points. III. Proc. London Math. Soc., (3) 87 (2003), No. 3, 591–609. [CrossRef] [MathSciNet]
  5. D. G. Kendall. On the number of lattice points inside a random oval. Quart. J. Math., Oxford Ser. 19, (1948), 1–26. [CrossRef] [MathSciNet]
  6. L. Parnovski, A. V. Sobolev. On the Bethe–Sommerfeld conjecture for the polyharmonic operator. Duke Math. J., 107 (2001), No. 2, 209–238. [CrossRef] [MathSciNet]
  7. L. Parnovski, A. V. Sobolev. Lattice points, perturbation theory and the periodic polyharmonic operator. Annales H. Poincaré, 2 (2001), 573–581. [CrossRef]
  8. M. Skriganov. Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators. Proc. Steklov Math. Inst. Vol., (1984) 171.
  9. A. Walfisz. Gitterpunkte in mehrdimensionalen Kugeln. Warszawa: Panstwowe Wydawnictwo Naukowe, 1957.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.