Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 5, 2010
Reaction-diffusion waves
Page(s) 102 - 122
Published online 27 July 2010
  1. M. Abbott. Phytoplankton patchiness: ecological implications and observation methods. In: Patch dynamics (Levin, S. A., Powell, T. M. and Steele, J. H., eds.), Lecture Notes in Biomath., 96 (1993), 37-49. [Google Scholar]
  2. A. D. Bazykin, A.I. Khibnik, B. Krauskopf, B. Nonlinear dynamics of interacting populations. World Scientific, Singapore, 1998. [Google Scholar]
  3. B. Chen, M. Wang. Qualitative analysis for a diffusive predator-prey model. Comp. Math. with Appl., 55 (2008), 339-355. [CrossRef] [Google Scholar]
  4. B. Dubey, J. Hussain. Modelling the interaction of two biological species in polluted environment. J. Math. Anal. Appl., 246 (2000), 58-79. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. J. R. Fasham. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Annu. Rev., 16 (1978), 43-79. [Google Scholar]
  6. C. Fu, R. Mohn, L.P. Fanning. Why the Atlantic cod stock off eastern Nova Scotia has not recovered. Can. J. Fish. Aquat. Sci., 58 (2001), 1613-1623. [CrossRef] [Google Scholar]
  7. H. Gao, H. Wei, W. Sun, X. Zhai. Functions used in biological models and their influence on simulations. Indian J. Marine Sci., 29 (2000), 230-237. [Google Scholar]
  8. C.H. Greene, E. A. Widder, M. J. Youngbluth, A. Tamse, G. E. Johnson. The migration behavior, fine structure and bioluminescent activity of krill sound-scattering layers. Limnology and Oceanography, 37 (1992), 650-658. [CrossRef] [Google Scholar]
  9. V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. Mooij, S. Railsback, H. Thulke, J. Weiner, T. Wiegand, D. DeAngelis Pattern-oriented modeling of agent-based complex systems: lessons from ecology, Science, 310 (2005), 987–991. [CrossRef] [PubMed] [Google Scholar]
  10. A.C. Hammer, J.W. Pitchford. The role of mixotrophy in plankton bloom dynamics and the consequences for productivity. ICES J. Marine Sci., 62 (2005), 833-840. [CrossRef] [Google Scholar]
  11. T.K. Kar, H. Matsuda. Global dynamics and controllability of a harvested prey-predator system with Holling type III functional response. Nonlinear Anal.: Hybrid Systems, 1 (2007), 59-67. [CrossRef] [Google Scholar]
  12. M. Liermann, R. Hilborn. Depensation: Evidence, models and implications. Fish and Fisheries, 2 (2001), 33-58. [Google Scholar]
  13. C. Loehle. Challenges of ecological complexity. Ecological Complexity, 1 (2004), 3-6. [CrossRef] [Google Scholar]
  14. D. Ludwig, D. Jones, C. Holling. Qualitative analysis of an insect outbreak system: the spruce budworm and forest. J. Animal Eco., 47 (1978), 315-332. [Google Scholar]
  15. F. Mackas, C. M. Boyd. Spectral analysis of zooplankton spatial heterogeneity. Science, 204 (1979), 62-64. [CrossRef] [PubMed] [Google Scholar]
  16. K. G. Magnusson, O.K. Palsson. Predator-prey interactions of cod and capelin in Icelandic waters. ICES Marine Science Symposium, 193 (1991), 153-170. [Google Scholar]
  17. H. Malchow. Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc. Roy. Soc. Lond. Series B, 251 (1993), 103-109. [Google Scholar]
  18. H. Malchow. Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. J. Marine Systems, 7 (1996), 193-202. [Google Scholar]
  19. H. Malchow. Non-equilibrium spatio-temporal patterns in models of non-linear plankton dynamics. Freshwater Biol., 45 (2000), 239-251. [CrossRef] [Google Scholar]
  20. H. Malchow, S. V. Petrovskii, A. B. Medvinsky. Numerical study of plankton-fish dynamics in a spatially structured and noisy environment. Ecol. Model., 149 (2002), 247-255. [CrossRef] [Google Scholar]
  21. H. Malchow, S. V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation, CRC Press, UK, 2008. [Google Scholar]
  22. R. M. May. Stability and Complexity in model ecosystems. Princeton University press, Princeton, NJ. 1973. [Google Scholar]
  23. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow, B.-L. Li. Spatiotemporal complexity of plankton and fish dynamics. SIAM Review, 44 (2002), 311-370. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, E. Venturino, H. Malchow. Chaos and regular dynamics in a model multi-habitat plankton-fish community. J. Biosciences, 26 (2001), 109-120. [CrossRef] [Google Scholar]
  25. A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, B. -L. Li, Z. S. Lin, H. Malchow. Patchy environment as a factor of complex plankton dynamics. Phys. Rev. E, 64 (2001), 021915-021917. [CrossRef] [Google Scholar]
  26. L. Michaelis, M. L. Menten. Die Kinetik der Invertinwirkung. Biochem. Z., 49 (1913), 333-369. [Google Scholar]
  27. A. Morozov. Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling. J. Theor. Biol., 265 (2010), 45-54. [Google Scholar]
  28. A. Morozov, E. Arashkevich, M. Reigstad, S. Falk-Petersen. Influence of spatial heterogeneity on the type of zooplankton functional response: A study based on field observations. Deep-Sea Research II, 55 (2008), 2285-2291. [CrossRef] [Google Scholar]
  29. J. D. Murray. Mathematical biology. Springer-Verlag, New York, 1989. [Google Scholar]
  30. K. T. Nilssen, O.-P. Pedersen, L. Folkow, T. Haug. Food consumption estimates of Barents Sea harp seals. NAMMCO Scientific Publications, 2 (2000), 9-27. [Google Scholar]
  31. A. Okubo. Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin. 1980. [Google Scholar]
  32. M. Pascual. 1993. Diffusion-induced chaos in a spatial predator-prey system. Proc. Royal Soc. B, 251 (1993), 1-7. [Google Scholar]
  33. S. V. Petrovskii, H. Malchow. Critical phenomena in plankton communities: KISS model revisited. Nonlinear Anal.: RWA, 1 (2000), 37-51. [Google Scholar]
  34. S. V. Petrovskii, H. Malchow. Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol., 59 (2001), 157-174. [CrossRef] [PubMed] [Google Scholar]
  35. J. -C. Poggiale, M. Gauduchon, P. Auger. Enrichment paradox induced by spatial heterogeneity in a phytoplankton- zooplankton system. Math. Model. Natural Phenom., 3 (2008), 87-102. [CrossRef] [EDP Sciences] [Google Scholar]
  36. L. A. Real. The kinetic of functional response. Am. Nat., 111 (1977), 289-300. [CrossRef] [Google Scholar]
  37. M. Scheffer. Ecology of shallow lakes. Chapman and Hall, London. 1998. [Google Scholar]
  38. M. Scheffer, R. J. De Boer. Implications of spatial heterogeneity for the paradox of enrichment. Ecology, 76 (1996), 2270-2277. [Google Scholar]
  39. T. Schweder, G. S. Hagen, E. Hatlebakk. Direct and indirect effects of minke whale abundance on cod and herring fisheries: A scenario experiment for the Greater Barents Sea. NAMMCO Scientific Publications, 1 (2000), 120-133. [Google Scholar]
  40. L. A. Segel, J. L. Jackson. Dissipative structure: An explanation and an ecological example. J. Theo. Biol., 37 (1972), 545-559. [Google Scholar]
  41. J. A. Sherratt, B. T. Eagan, M. A. Lewis. Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality? Phil. Trans. Roy. Soc. Lond. B, 352 (1997), 21-38. [Google Scholar]
  42. J. A. Sherratt, M. A. Lewis, A. C. Fowler. Ecological chaos in the wake of invasion. PNAS, 92 (1995), 2524-2528. [Google Scholar]
  43. J. H. Steele. Spatial pattern in plankton communities. Plenum Press, New York, 1978. [Google Scholar]
  44. J. H. Steele, E. W. Henderson. A simple plankton model. Am. Nat., 117 (1981), 676-691. [CrossRef] [Google Scholar]
  45. J. H. Steele, E. W. Henderson. A simple model for plankton patchiness. J. Plankton Research, 14 (1992), 1397-1403. [CrossRef] [Google Scholar]
  46. J. H. Steele, E. W. Henderson. The role of predation in plankton models. J. Plankton Research, 14 (1992), 157-172. [Google Scholar]
  47. J. E. Truscott, J. Brindley. Equilibria, stability and excitability in a general class of plankton population models. Phil. Trans. Roy. Soc. Lond. A, 347 (1994), 703-718. [CrossRef] [Google Scholar]
  48. J. E. Truscott, J. Brindley. Ocean plankton populations as excitable media. Bull. Math. Biol., 56 (1994), 981-998. [Google Scholar]
  49. P. Turchin. Complex population dynamics: a theoretical/empirical Synthesis. Princeton University Press, Princeton, NJ, 2003. [Google Scholar]
  50. R. K. Upadhyay, N. Kumari, V. Rai. Wave of chaos and pattern formation in a spatial predator-prey system with Holling type IV functional response. Math. Model. Natural Phenom., 3 (2008), 71-95. [CrossRef] [EDP Sciences] [Google Scholar]
  51. R. K. Upadhyay, N. Kumari, V. Rai. Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton-fish dynamics. Chaos Solit. Fract., 40 (2009), 262-276. [CrossRef] [Google Scholar]
  52. R. K. Upadhyay, N. K. Thakur, B. Dubey. Nonlinear non-equilibrium pattern formation in a spatial aquatic system: Effect of fish predation. J. Biol. Sys., 18 (2010), 129-159. [CrossRef] [Google Scholar]
  53. J. Xiao, H. Li, J. Yang, G. Hu. Chaotic Turing pattern formation in spatiotemporal systems. Frontier of Physics in China, 1 (2006), 204-208. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.