Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 5, 2010
Reaction-diffusion waves
Page(s) 102 - 122
Published online 27 July 2010
  1. M. Abbott. Phytoplankton patchiness: ecological implications and observation methods. In: Patch dynamics (Levin, S. A., Powell, T. M. and Steele, J. H., eds.), Lecture Notes in Biomath., 96 (1993), 37-49.
  2. A. D. Bazykin, A.I. Khibnik, B. Krauskopf, B. Nonlinear dynamics of interacting populations. World Scientific, Singapore, 1998.
  3. B. Chen, M. Wang. Qualitative analysis for a diffusive predator-prey model. Comp. Math. with Appl., 55 (2008), 339-355. [CrossRef]
  4. B. Dubey, J. Hussain. Modelling the interaction of two biological species in polluted environment. J. Math. Anal. Appl., 246 (2000), 58-79. [CrossRef] [MathSciNet]
  5. M. J. R. Fasham. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Annu. Rev., 16 (1978), 43-79.
  6. C. Fu, R. Mohn, L.P. Fanning. Why the Atlantic cod stock off eastern Nova Scotia has not recovered. Can. J. Fish. Aquat. Sci., 58 (2001), 1613-1623. [CrossRef]
  7. H. Gao, H. Wei, W. Sun, X. Zhai. Functions used in biological models and their influence on simulations. Indian J. Marine Sci., 29 (2000), 230-237.
  8. C.H. Greene, E. A. Widder, M. J. Youngbluth, A. Tamse, G. E. Johnson. The migration behavior, fine structure and bioluminescent activity of krill sound-scattering layers. Limnology and Oceanography, 37 (1992), 650-658. [CrossRef]
  9. V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. Mooij, S. Railsback, H. Thulke, J. Weiner, T. Wiegand, D. DeAngelis Pattern-oriented modeling of agent-based complex systems: lessons from ecology, Science, 310 (2005), 987–991. [CrossRef] [PubMed]
  10. A.C. Hammer, J.W. Pitchford. The role of mixotrophy in plankton bloom dynamics and the consequences for productivity. ICES J. Marine Sci., 62 (2005), 833-840. [CrossRef]
  11. T.K. Kar, H. Matsuda. Global dynamics and controllability of a harvested prey-predator system with Holling type III functional response. Nonlinear Anal.: Hybrid Systems, 1 (2007), 59-67. [CrossRef]
  12. M. Liermann, R. Hilborn. Depensation: Evidence, models and implications. Fish and Fisheries, 2 (2001), 33-58. [CrossRef]
  13. C. Loehle. Challenges of ecological complexity. Ecological Complexity, 1 (2004), 3-6. [CrossRef]
  14. D. Ludwig, D. Jones, C. Holling. Qualitative analysis of an insect outbreak system: the spruce budworm and forest. J. Animal Eco., 47 (1978), 315-332. [CrossRef]
  15. F. Mackas, C. M. Boyd. Spectral analysis of zooplankton spatial heterogeneity. Science, 204 (1979), 62-64. [CrossRef] [PubMed]
  16. K. G. Magnusson, O.K. Palsson. Predator-prey interactions of cod and capelin in Icelandic waters. ICES Marine Science Symposium, 193 (1991), 153-170.
  17. H. Malchow. Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics. Proc. Roy. Soc. Lond. Series B, 251 (1993), 103-109. [CrossRef]
  18. H. Malchow. Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. J. Marine Systems, 7 (1996), 193-202. [CrossRef]
  19. H. Malchow. Non-equilibrium spatio-temporal patterns in models of non-linear plankton dynamics. Freshwater Biol., 45 (2000), 239-251. [CrossRef]
  20. H. Malchow, S. V. Petrovskii, A. B. Medvinsky. Numerical study of plankton-fish dynamics in a spatially structured and noisy environment. Ecol. Model., 149 (2002), 247-255. [CrossRef]
  21. H. Malchow, S. V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation, CRC Press, UK, 2008.
  22. R. M. May. Stability and Complexity in model ecosystems. Princeton University press, Princeton, NJ. 1973.
  23. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow, B.-L. Li. Spatiotemporal complexity of plankton and fish dynamics. SIAM Review, 44 (2002), 311-370. [CrossRef] [MathSciNet]
  24. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, E. Venturino, H. Malchow. Chaos and regular dynamics in a model multi-habitat plankton-fish community. J. Biosciences, 26 (2001), 109-120. [CrossRef]
  25. A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, B. -L. Li, Z. S. Lin, H. Malchow. Patchy environment as a factor of complex plankton dynamics. Phys. Rev. E, 64 (2001), 021915-021917. [CrossRef]
  26. L. Michaelis, M. L. Menten. Die Kinetik der Invertinwirkung. Biochem. Z., 49 (1913), 333-369.
  27. A. Morozov. Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling. J. Theor. Biol., 265 (2010), 45-54. [CrossRef] [MathSciNet] [PubMed]
  28. A. Morozov, E. Arashkevich, M. Reigstad, S. Falk-Petersen. Influence of spatial heterogeneity on the type of zooplankton functional response: A study based on field observations. Deep-Sea Research II, 55 (2008), 2285-2291. [CrossRef]
  29. J. D. Murray. Mathematical biology. Springer-Verlag, New York, 1989.
  30. K. T. Nilssen, O.-P. Pedersen, L. Folkow, T. Haug. Food consumption estimates of Barents Sea harp seals. NAMMCO Scientific Publications, 2 (2000), 9-27.
  31. A. Okubo. Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin. 1980.
  32. M. Pascual. 1993. Diffusion-induced chaos in a spatial predator-prey system. Proc. Royal Soc. B, 251 (1993), 1-7. [CrossRef]
  33. S. V. Petrovskii, H. Malchow. Critical phenomena in plankton communities: KISS model revisited. Nonlinear Anal.: RWA, 1 (2000), 37-51. [CrossRef] [MathSciNet]
  34. S. V. Petrovskii, H. Malchow. Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol., 59 (2001), 157-174. [CrossRef] [PubMed]
  35. J. -C. Poggiale, M. Gauduchon, P. Auger. Enrichment paradox induced by spatial heterogeneity in a phytoplankton- zooplankton system. Math. Model. Natural Phenom., 3 (2008), 87-102. [CrossRef] [EDP Sciences]
  36. L. A. Real. The kinetic of functional response. Am. Nat., 111 (1977), 289-300. [CrossRef]
  37. M. Scheffer. Ecology of shallow lakes. Chapman and Hall, London. 1998.
  38. M. Scheffer, R. J. De Boer. Implications of spatial heterogeneity for the paradox of enrichment. Ecology, 76 (1996), 2270-2277. [CrossRef]
  39. T. Schweder, G. S. Hagen, E. Hatlebakk. Direct and indirect effects of minke whale abundance on cod and herring fisheries: A scenario experiment for the Greater Barents Sea. NAMMCO Scientific Publications, 1 (2000), 120-133.
  40. L. A. Segel, J. L. Jackson. Dissipative structure: An explanation and an ecological example. J. Theo. Biol., 37 (1972), 545-559. [CrossRef] [PubMed]
  41. J. A. Sherratt, B. T. Eagan, M. A. Lewis. Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality? Phil. Trans. Roy. Soc. Lond. B, 352 (1997), 21-38. [CrossRef]
  42. J. A. Sherratt, M. A. Lewis, A. C. Fowler. Ecological chaos in the wake of invasion. PNAS, 92 (1995), 2524-2528. [CrossRef]
  43. J. H. Steele. Spatial pattern in plankton communities. Plenum Press, New York, 1978.
  44. J. H. Steele, E. W. Henderson. A simple plankton model. Am. Nat., 117 (1981), 676-691. [CrossRef]
  45. J. H. Steele, E. W. Henderson. A simple model for plankton patchiness. J. Plankton Research, 14 (1992), 1397-1403. [CrossRef]
  46. J. H. Steele, E. W. Henderson. The role of predation in plankton models. J. Plankton Research, 14 (1992), 157-172. [CrossRef]
  47. J. E. Truscott, J. Brindley. Equilibria, stability and excitability in a general class of plankton population models. Phil. Trans. Roy. Soc. Lond. A, 347 (1994), 703-718. [CrossRef]
  48. J. E. Truscott, J. Brindley. Ocean plankton populations as excitable media. Bull. Math. Biol., 56 (1994), 981-998.
  49. P. Turchin. Complex population dynamics: a theoretical/empirical Synthesis. Princeton University Press, Princeton, NJ, 2003.
  50. R. K. Upadhyay, N. Kumari, V. Rai. Wave of chaos and pattern formation in a spatial predator-prey system with Holling type IV functional response. Math. Model. Natural Phenom., 3 (2008), 71-95. [CrossRef] [EDP Sciences]
  51. R. K. Upadhyay, N. Kumari, V. Rai. Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton-fish dynamics. Chaos Solit. Fract., 40 (2009), 262-276. [CrossRef]
  52. R. K. Upadhyay, N. K. Thakur, B. Dubey. Nonlinear non-equilibrium pattern formation in a spatial aquatic system: Effect of fish predation. J. Biol. Sys., 18 (2010), 129-159. [CrossRef]
  53. J. Xiao, H. Li, J. Yang, G. Hu. Chaotic Turing pattern formation in spatiotemporal systems. Frontier of Physics in China, 1 (2006), 204-208. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.