Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 5, Number 5, 2010
Reaction-diffusion waves
|
|
---|---|---|
Page(s) | 123 - 137 | |
DOI | https://doi.org/10.1051/mmnp/20105508 | |
Published online | 13 September 2010 |
- K. Allali, A. Ducrot, A. Taik, V. Volpert. Convective instability of reaction fronts in porous media. Math. Model. Nat. Phenom., 2 (2007), no. 2, 20–39. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- D. Aronson, H. Weinberger. Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation. Lecture Notes in Math Vol. 446, pringer-Verlag, Berlin, 1975. [Google Scholar]
- B.S. Bhadauria, P.K. BhatiaL. Debnath. Convection in Hele-Shaw cell with parametric excitation. Int. Journal of Non-Linear Mechanics, 40 (2005), 475–484. [CrossRef] [Google Scholar]
- T. Boulal, S. Aniss, M. Belhaq, R. Rand. Effect of quasiperiodic gravitational modulation on the stability of a heated fluid layer. Phys. Rev. E. 52 (2007), 76, 56320. [Google Scholar]
- N.F. Britton. Reaction-Diffusion Equations and Their Applications to Biology. Academic Press, New York, 1986. [Google Scholar]
- E. BrunetB. Derrida. Shift in the velocity of a front due to a cutoff. Phys. Rev. E, 56 (1997), 2597–2604. [CrossRef] [MathSciNet] [Google Scholar]
- U. EbertW. Van Saarloos. Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D 146 (2000), 1–99. [CrossRef] [MathSciNet] [Google Scholar]
- M. Freidlin. Markov Processes and Differential Equations: Asymptotic Problems. Birkhauser, Basel, 1996. [Google Scholar]
- G.Z. Gershuni, A.K. Kolesnikov, J.C. LegrosB.I. Myznikova. On the vibrational convective instability of a horizontal, binary-mixture layer with Soret effect. Journal of Fluid Mechanics, 330 (1997), 251–269. [Google Scholar]
- G.Z. Gershuni, E.M. Zhukhovitskii. The Convective Stability of Incompressible Fluids. Keter Publications, Jerusalem, (1976), 203–230. [Google Scholar]
- P.M. Gresho, R.L. Sani. The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech., 40 (1970), no. 4, 783–806. [Google Scholar]
- B.T. Murray, S.R. CoriellG.B. McFadden. The effect of gravity modulation on solutal convection during directional solidification. Journal of Crystal Growth, 110 (1991), 713–723. [CrossRef] [Google Scholar]
- J.D. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1989. [Google Scholar]
- A.C. Or. Finite-wavelength instability in a horizontal liquid layer on an oscillating plane. J. Fluid Mech., 335 (1997), 213–232. [CrossRef] [MathSciNet] [Google Scholar]
- J.L. Rogers, M.F. Schatz, J.L. Bougie, J.B. Swift. Rayleigh-Bénard convection in a vertically oscillated fluid layer. Phys. Rev. Lett. 84 (2000), no. 1, 87–90. [CrossRef] [PubMed] [Google Scholar]
- S. RosenblatG.A. Tanaka. Modulation of thermal convection instability. Phys. Fluids, 7 (1971), 1319–1322. [Google Scholar]
- U.E. VolmarH.W. Muller. Quasiperiodic patterns in Rayleigh-Bénard convection under gravity modulation. Phys. Rev. E, 56 (1997), 5423–5430. [CrossRef] [Google Scholar]
- V. VolpertS. Petrovskii. Reaction-diffusion waves in biology. Physics of Life Reviews, 6 (2009), 267–310. [Google Scholar]
- A. Volpert, Vit. Volpert, Vl. Volpert. Traveling wave solutions of parabolic system. American Mathematical Society, Providence, RI, (1994) 448 pp. [Google Scholar]
- M. Wadih, B. Roux. The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech., 40 (1970), no. 4, 783–806. [Google Scholar]
- A.A. Wheeler, G.B. McFadden, B.T. Murray, S.R. Coriell. Convective stability in the Rayleigh-Bénard and directional solidification problems: high-frequency gravity modulation. Phys. Fluids A, 3 (1991), no. 12, 2847–2858. [CrossRef] [MathSciNet] [Google Scholar]
- G.H. Wolf. Dynamic stabilization of interchange instability of a liquid-gas interface. Phys. Rev. Lett., 24 (1970), 444–446. [CrossRef] [Google Scholar]
- D.R. WoodsS.P. Lin. Instability of a liquid film flow over a vibrating inclined plane. J. Fluid Mech., 294 (1995), 391–407. [CrossRef] [MathSciNet] [Google Scholar]
- Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze. The Mathematical Theory of Combustion and Explosions. Consultants Bureau, Plenum, New York, 1985. [Google Scholar]
- Ya.B. ZeldovichD.A. Frank-Kamenetsky. The theory of thermal propagation of flames. Zh. Fiz. Khim., 12 (1938), 100–105. [Google Scholar]
- S.M. Zenkovskaya. Action of high-frequency vibration on filtration convection. J. Appl. Mech. Tech. Phys., 32 (1992), 83–86. [Google Scholar]
- S.M. ZenkovskayaT.N. Rogovenko. Filtration convection in a high-frequency vibration field. J. Appl. Mech. Tech. Phys., 40 (1999), 379–385. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.