Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 5, 2010
Reaction-diffusion waves
Page(s) 13 - 35
Published online 27 July 2010
  1. R. S. Cantrell, C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. John Wiley and Sons Ltd, New York, 2003.
  2. L.C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2010.
  3. P. Grindrod. The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves. Clarendon Press, Oxford, 1996.
  4. J.S. Guo, J. Tsai. The asymptotic behavior of solutions of the buffered bistable system. J. Math. Biol., 53 (2006), No. 1, 179–213. [CrossRef] [MathSciNet] [PubMed]
  5. S. Heinze, B. Schweizer. Creeping fronts in degenerate reaction-diffusion systems. Nonlinearity, 18 (2005), No. 6, 2455–2476. [CrossRef] [MathSciNet]
  6. S. Heinze, B. Schweizer, H. Schwetlick.Existence of front solutions in degenerate reaction diffusion systems. Preprint 2004-03, SFB 359, University of Heidelberg, 2004.
  7. Y. Hosono. Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra competition models. In Numerical and Applied Mathematics (Paris1989) IMACS Ann. Comput. Appl. Math., (1989), No 2., 687–692.
  8. Y. Hosono, M. Mimura. Singular perturbation approach to traveling waves in competing and diffusing species models. J. Math. Kyoto University, 22 (1982), No. 3, 435–461.
  9. B. Kazmierczak, V. Volpert. Travelling waves in partially degenerate reaction-diffusion systems. Mathematical Modelling of Natural Phenomena, 2 (2007), No. 2, 106–125. [CrossRef] [EDP Sciences] [MathSciNet]
  10. B. Kazmierczak, V. Volpert. Calcium waves in systems with immobile buffers as a limit of waves for systems with nonzero diffusion. Nonlinearity, 21 (2008), No. 1, 71–96. [CrossRef] [MathSciNet]
  11. B. Kazmierczak, V. Volpert. Mechano-chemical calcium waves in systems with immobile buffers. Archives of Mechanics, 60 (2008), No. 1, 3–22.
  12. D.J. B. Lloyd, B. Sandstede, D. Avitabile, A.R. Champneys. Localized hexagon patterns of the planar Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst., 7 (2008), No. 3, 1049–1100. [CrossRef] [MathSciNet]
  13. J.D. Murray. Mathematical Biology, II: Spatial Models and Biomedical Applications, volume 2. Springer-Verlag, Berlin, 2003.
  14. A. Okubo, S.A. Levin. Diffusion and Ecological Problems: Modern Perspectives. Springer-Verlag, New York, 2001.
  15. J.A. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, Berlin, 1994.
  16. J.C. Tsai, J. Sneyd. Existence and stability of traveling waves in buffered systems. SIAM J. Applied Math., 66 (2005), No. 1, 237–265. [CrossRef]
  17. A.I. Volpert, V.A. Volpert, V.A. Volpert. Traveling Wave Solutions of Parabolic Systems: Translations of Mathematical Monographs, volume 140. American Mathematical Society, Providence, R.I., 1994.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.