Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 5, 2010
Reaction-diffusion waves
Page(s) 46 - 63
Published online 27 July 2010
  1. D. G. Aronson, H. F. Weinberger. Multidimensional diffusion arising in population genetics. Adv. Math., 30 (1978), 33–58. [Google Scholar]
  2. H. L. Ashe, J. Briscoe. The interpretation of morphogen gradients. Development, 133 (2006), 385–394. [CrossRef] [PubMed] [Google Scholar]
  3. H. Berestycki, F. Hamel. Generalized travelling waves for reaction-diffusion equations. Perspectives in nonlinear partial differential equations, volume 446 of Contemp. Math., pages 101–123. Amer. Math. Soc., Providence, RI, 2007. [Google Scholar]
  4. J. D. Buckmaster, G. S. S. Ludford. Theory of laminar flames. Cambridge University Press, Cambridge, 1982. [Google Scholar]
  5. G. Chapuisat. Existence and nonexistence of curved front solution of a biological equation. J. Differential Equations 236 (2007), 237–279. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Chapuisat and R. Joly, Asymptotic profiles for a travelling front solution of a biological equation. Preprint. [Google Scholar]
  7. G. Dal Maso. An Introduction to Γ-Convergence. Birkhäuser, Boston, 1993. [Google Scholar]
  8. P. C. Fife.Mathematical Aspects of Reacting and Diffusing Systems. Springer-Verlag, Berlin, 1979. [Google Scholar]
  9. M. Freeman. Feedback control of intercellular signalling in development. Nature, 408 (2000), 313–319. [CrossRef] [PubMed] [Google Scholar]
  10. D. Gilbarg, N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1983. [Google Scholar]
  11. U. Heberlin, K. Moses. Mechanisms of Drosophila retinal morphogenesis: the virtues of being progressive. Cell, 81 (1995), 987–990. [CrossRef] [PubMed] [Google Scholar]
  12. B. Kazmierczak, V. Volpert. Travelling calcium waves in systems with non-diffusing buffers. Math. Models Methods Appl. Sci., 18 (2008), 883–912. [Google Scholar]
  13. J. Lembong, N. Yakoby, S. Y. Shvartsman. Pattern formation by dynamically interacting network motifs. Proc. Natl. Acad. Sci. USA, 106 (2009), 3213-3218. [CrossRef] [Google Scholar]
  14. M. Lucia, C. B. Muratov, M. Novaga. Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders. Arch. Rational Mech. Anal., 188 (2008), 475–508. [CrossRef] [Google Scholar]
  15. A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems, volume 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, Basel, 1995. [Google Scholar]
  16. A. Martinez-Arias, A. Stewart. Molecular principles of animal development. Oxford University Press, New York, 2002. [Google Scholar]
  17. C. B. Muratov. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete Cont. Dyn. S., Ser. B, 4 (2004), 867–892. [CrossRef] [Google Scholar]
  18. C. B. Muratov, M. Novaga. Front propagation in infinite cylinders. I. A variational approach. Comm. Math. Sci., 6 (2008), 799–826. [Google Scholar]
  19. C. B. Muratov, F. Posta, S. Y. Shvartsman. Autocrine signal transmission with extracellular ligand degradation. Phys. Biol., 6 (2009), 016006. [CrossRef] [PubMed] [Google Scholar]
  20. C. B. Muratov, S. Y. Shvartsman. Signal propagation and failure in discrete autocrine relays. Phys. Rev. Lett., 93 (2004), 118101. [CrossRef] [PubMed] [Google Scholar]
  21. M. Přibyl, C. B. Muratov, S. Y. Shvartsman. Discrete models of autocrine cell communication in epithelial layers. Biophys. J., 84 (2003), 3624–3635. [CrossRef] [PubMed] [Google Scholar]
  22. M. Přibyl, C. B. Muratov, S. Y. Shvartsman. Long-range signal transmission in autocrine relays. Biophys. J., 84 (2003), 883–896. [CrossRef] [PubMed] [Google Scholar]
  23. N. Shigesada, K. Kawasaki. Biological invasions: theory and practice. Oxford Series in Ecology and Evolution. Oxford Univ. Press, Oxford, 1997. [Google Scholar]
  24. T. Tabata, Y. Takei. Morphogens, their identification and regulation. Development, 131 (2004), 703–712. [CrossRef] [PubMed] [Google Scholar]
  25. J. J. Tyson, K. Chen, B. Novak. Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol., 2 (2001), 908–916. [Google Scholar]
  26. A. I. Volpert, V. A. Volpert, V. A. Volpert. Traveling wave solutions of parabolic systems. AMS, Providence, 1994. [Google Scholar]
  27. V. Volpert, A. Volpert. Existence of multidimensional travelling waves in the bistable case. C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 245–250. [Google Scholar]
  28. H. S. Wiley, S. Y. Shvartsman, D. A. Lauffenburger. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol., 13 (2003), 43–50. [Google Scholar]
  29. L. Wolpert, R. Beddington, T. Jessel, P. Lawrence, E. Meyerowitz. Principles of Development. Oxford University Press, Oxford, 1998. [Google Scholar]
  30. J. Xin. Front propagation in heterogeneous media. SIAM Review, 42 (2000), 161–230. [CrossRef] [MathSciNet] [Google Scholar]
  31. N. Yakoby, J. Lembong, T. Schüpbach, S. Y. Shvartsman Drosophila eggshell is patterned by sequential action of feedforward and feedback loops. Development, 135 (2008), 343–351. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.