Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 5, 2010
Reaction-diffusion waves
Page(s) 64 - 79
Published online 27 July 2010
  1. D.G. Aronson. Density dependent interaction systems. In: W.H. Steward et al. (eds.) Dynamics and Modelling of Reactive Systems, pp. 1161-176. Academic Press, New York, 1980. [Google Scholar]
  2. B.P. Ayati, G.F. Webb, A.R.A. Anderson. Computational methods and results for structured multiscale models of tumor invasion. Multiscale Modeling & Simulation, 5 (2006), 1-20. [CrossRef] [MathSciNet] [Google Scholar]
  3. R.D. Benguria, M.C. Depassier. Speed of fronts of the reaction-diffusion equation. Phys. Rev. Lett., 77 (1996), 1171-1173. [CrossRef] [PubMed] [Google Scholar]
  4. Z. Biró. Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type. Adv. Nonlinear Stud., 2 (2002), 357-371. [MathSciNet] [Google Scholar]
  5. A.Q. Cai, K.A. Landman, B.D. Hughes. Multi-scale modelling of a wound healing cell migration assay. J. Theor. Biol., 245 (2007), 576-594. [Google Scholar]
  6. I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, I.G. Ron. Continuous and discrete models of cooperation in complex bacterial colonies. Fractals, 7 (1999), 235-247. [CrossRef] [Google Scholar]
  7. P. Feng, Z. Zhou. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony. Comm. Pure Appl. Anal., 6 (2007), 1145-1165. [CrossRef] [Google Scholar]
  8. R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7 (1937), 353-369. [Google Scholar]
  9. G. García-Ramos, F. Sànchez-Garduño, P.K. Maini. Dispersal can sharpen parapatric boundaries on a spatially varying environment. Ecology, 81 (2000), 749-760. [Google Scholar]
  10. R.A. Gatenby, E.T. Gawlinski. A reaction-diffusion model of cancer invasion. Cancer Res., 56 (1996), 4740-4743. [Google Scholar]
  11. B.H. Gilding, R. Kersner. A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave solutions. J. Phys. A: Math. Gen., 38 (2005), 3367-3379. [CrossRef] [Google Scholar]
  12. W.S.C. Gurney, R.M. Nisbet. The regulation of inhomogeneous population. J. Theor. Biol., 52 (1975), 441-457. [Google Scholar]
  13. W.S.C. Gurney, R.M. Nisbet. A note on nonlinear population transport. J. Theor. Biol., 56 (1976), 249-251. [CrossRef] [PubMed] [Google Scholar]
  14. A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor, D. Thomson. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett., 8 (2005), 91-101. [CrossRef] [Google Scholar]
  15. J.J. Hellmann, J.E. Byers, B.G. Bierwagen, J.S. Dukes. Five potential consequences of climate change for invasive species. Conserv. Biol., 22 (2008), 534-543. [Google Scholar]
  16. D. Hilhorst, R. Kersner, E. Logak, M. Mimura. Interface dynamics of the Fisher equation with degenerate diffusion. J. Differential Equations, 244 (2008), 2870-2889. [CrossRef] [MathSciNet] [Google Scholar]
  17. E.J. Hinch. Perturbation Methods. Cambridge University Press, 1991. [Google Scholar]
  18. S. Kamin, P. Rosenau. Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation. Rend. Mat. Acc. Lincei, 15 (2004a), 271-280. [Google Scholar]
  19. S. Kamin, P. Rosenau. Emergence of waves in a nonlinear convection-reaction-diffusion equation. Adv. Nonlinear Stud., 4 (2004b), 251-272. [MathSciNet] [Google Scholar]
  20. K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, N. Shigesada. Modeling spatio-temporal patterns generated by Bacillus subtilis. J. Theor. Biol., 188 (1997), 177-185. [CrossRef] [PubMed] [Google Scholar]
  21. J. Kevorkian, J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New York, 1996. [Google Scholar]
  22. S.Y. Kim, R. Torres, H. Drummond. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology, 90 (2009), 230-239. [CrossRef] [PubMed] [Google Scholar]
  23. F. Lutscher. Density-dependent dispersal in integrodifference equations. J. Math. Biol., 56 (2008), 499-524. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. P.K. Maini, S. McElwain, D. Leavesley. A travelling wave model to interpret a wound healing migration assay for human peritoneal mesothelial cells. Tissue Eng., 10 (2004), 475-482. [CrossRef] [PubMed] [Google Scholar]
  25. L. Malaguti, C. Marcelli. Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations. Advanced Nonlinear Studies, 5 (2005), 223-252. [MathSciNet] [Google Scholar]
  26. L. Malaguti, C. Marcelli. Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations. J. Differential Equations, 195 (2003), 471-496. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.B.A. Mansour. Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation. Applied Mathematical Modelling, 32 (2008), 240-247. [CrossRef] [Google Scholar]
  28. E. Matthysen. Density-dependent dispersal in birds and mammals. Ecography, 28 (2005), 403-416. [CrossRef] [Google Scholar]
  29. G.S. Medvedev, K. Ono, P.J. Holmes. Travelling wave solutions of the degenerate Kolmogorov-Petrovski-Piskunov equation. Eur. J. Appl. Math., 14 (2003) 343-367. [CrossRef] [Google Scholar]
  30. W.I. Newman. Some exact solutions to a nonlinear diffusion problem in population genetics and combustion. J. Theor. Biol., 85 (1980), 325-334. [CrossRef] [PubMed] [Google Scholar]
  31. A. Okubo, A. Hastings, T. Powell. Population dynamics in temporal and spatial domains. In: A. Okubo, S.A. Levin (eds.) Diffusion and ecological problems: modern perspectives, pp. 298-373. Springer, New York, 2001. [Google Scholar]
  32. K.J. Painter, J.A. Sherratt. Modelling the movement of interacting cell populations. J. Theor. Biol., 225 (2003), 327-339. [CrossRef] [PubMed] [Google Scholar]
  33. B.-E. Saether, S. Engen, R. Lande. Finite metapopulation models with density-dependent migration and stochastic local dynamics. Proc. R. Soc. Lond. B, 266 (1999), 113-118. [CrossRef] [Google Scholar]
  34. F. Sànchez-Garduño, P.K. Maini. Existence and uniqueness of a sharp front travelling wave in degenerate nonlinear diffusion Fisher-KPP equations. J. Math. Biol., 33 (1994a), 163-192. [CrossRef] [MathSciNet] [Google Scholar]
  35. F. Sànchez-Garduño, P.K. Maini. An approximation to a sharp front type solution of a density dependent reaction-diffusion equation. Appl. Math. Lett., 7 (1994b), 47-51. [CrossRef] [MathSciNet] [Google Scholar]
  36. F. Sànchez-Garduño, P.K. Maini. Travelling wave phenomena in some degenerate reaction-diffusion equations. J. Differential Equations, 117 (1995), 281-319. [CrossRef] [MathSciNet] [Google Scholar]
  37. F. Sànchez-Garduño, P.K. Maini, E. Kappos. A review on travelling wave solutions of one-dimensional reaction diffusion equations with non-linear diffusion term. FORMA, 11 (1996a), 45-59. [MathSciNet] [Google Scholar]
  38. F. Sànchez-Garduño, E. Kappos, P.K. Maini. A shooting argument approach to a sharp type solution for nonlinear degenerate Fisher-KPP equations. IMA J. Appl. Math. 57 (1996b), 211-221. [CrossRef] [MathSciNet] [Google Scholar]
  39. R.A. Satnoianu, P.K. Maini, F. Sànchez-Garduño, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems B, 1 (2001), 339-362. [CrossRef] [Google Scholar]
  40. B.G. Sengers, C.P. Please, R.O.C. Oreffo. Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface, 4 (2007), 1107-1117. [CrossRef] [PubMed] [Google Scholar]
  41. J.A. Sherratt. Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. Lond. A 456 (2000), 2365-2386. [CrossRef] [Google Scholar]
  42. J.A. Sherratt, J.D. Murray. Models of epidermal wound healing. Proc. R. Soc. Lond. B, 241 (1990), 29-36. [CrossRef] [Google Scholar]
  43. J.A. Sherratt, B.P. Marchant. Non-sharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion. Appl. Math. Lett. 9 (1996), 33-38. [CrossRef] [MathSciNet] [Google Scholar]
  44. J.A. Sherratt, M.A.J. Chaplain. A new mathematical model for avascular tumour growth. J. Math. Biol., 43 (2001), 291-312. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  45. N. Shigesada, K. Kawasaki, E. Teramoto. Spatial segregation of interacting species. J. Math. Biol., 79 (1979), 83-99. [Google Scholar]
  46. M.J. Simpson, K.A. Landman, K. Bhaganagarapu. Coalescence of interacting cell populations. J. Theor. Biol. 247 (2007), 525-543. [CrossRef] [PubMed] [Google Scholar]
  47. M.J. Simpson, K.A. Landman, B.D. Hughes, D.F. Newgreen. Looking inside an invasion wave of cells using continuum models: proliferation is the key. J. Theor. Biol., 243 (2006), 343-360. [CrossRef] [PubMed] [Google Scholar]
  48. J.G. Skellam. Random dispersal in theoretical populations. Biometrika, 38 (1951), 196-218. [Google Scholar]
  49. M.J. Smith, J.A. Sherratt, X. Lambin. The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations. J. Theor. Biol., 254 (2008), 264-274. [CrossRef] [PubMed] [Google Scholar]
  50. A. Tremel, A. Cai, N. Tirtaatmadja, B.D. Hughes, G.W. Stevens, K.A. Landman, A.J. OConnor. Cell migration and proliferation during monolayer formation and wound healing. Chem. Eng. Sci., 64 (2009), 247-253. [CrossRef] [Google Scholar]
  51. R.R. Veit, M.A. Lewis. Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol., 59 (1997), 107-137. [Google Scholar]
  52. Y. Wu. Existence of stationary solutions with transition layers for a class of cross-diffusion systems. Proc. R. Soc. Ed., 132A (2002), 1493-1511. [Google Scholar]
  53. J. Ylikarjula, S. Alaja, J. Laakso, D. Tesar. Effects of patch number and dispersal patterns on population dynamics and synchrony. J. Theor. Biol., 207 (2000), 377-387. [CrossRef] [PubMed] [Google Scholar]
  54. H.Y. Zhu, W. Yuan, C.H. Ou. Justification for wavefront propagation in a tumour growth model with contact inhibition. Proc. R. Soc. Lond. A, 464 (2008), 1257-1273. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.