Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 1 - 21
DOI https://doi.org/10.1051/mmnp/20105601
Published online 08 April 2010
  1. L. M. Abia, O. Angulo, J. C. López-Marcos. Age-structured population dynamics models and their numerical solutions. Ecol. Model., 188 (2005), 112–136. [CrossRef] [Google Scholar]
  2. L. M. Abia, O. Angulo, J. C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete Contin. Dyn. Syst. B, 4 (2004), 1203–1222. [CrossRef] [Google Scholar]
  3. L.M. Abia, O. Angulo, J.C. López-MarcosM.A. López-Marcos. Numerical schemes for a size-structured cell population model with equal fission. Mat. Computer Model., 50 (2009), 653–664. [CrossRef] [Google Scholar]
  4. M. Adimy, O. Angulo, F. CrausteJ.C. López-Marcos. Numerical integration of a mathematical model of hematopoietic stem cell dynamics. Computers and Math. Applic., 56 (2008), 594–606. [CrossRef] [MathSciNet] [Google Scholar]
  5. O. AnguloJ. C. López-Marcos. Numerical integration of fully nonlinear size-structured models. Appl. Numer. Math., 50 (2004), 291–327. [CrossRef] [MathSciNet] [Google Scholar]
  6. M.A. Bees, O. Angulo, J.C. López-Marcos, D. Schley. Dynamics of a structured slug population model in the absence of seasonal variation. Math. Mod. Meth. in Appl. Sci., 16 (2006), 1961–1985. [CrossRef] [Google Scholar]
  7. J.M. Cushing. An Introduction to Structured Populations Dynamics. CMB-NSF Regional Conference Series in Applied Mathematics. SIAM, 1998. [Google Scholar]
  8. M. Iannelli. Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs. C.N.R., Giardini Editori e Stampatori, Pisa, 1995. [Google Scholar]
  9. M. Iannelli, T. Kostova, F.A. Milner. A fourth-order method for numerical integration of age- and size-structured population models. Numer. Methods Partial Differential Equations, 25 (2009) 918–930. [CrossRef] [MathSciNet] [Google Scholar]
  10. S.A.L.M Kooijman, J.A.J. Metz. On the dynamics of chemically stressed populations: the deduction of a population consequences from effects on individuals. Ecotox. Environ. Saf., 8 (1984), 254–274. [CrossRef] [Google Scholar]
  11. J.A.J. Metz and E.O. Dieckmann, editors. The Dynamics of Physiologically Structured Populations. Springer Lecture Notes in Biomathematics, 68. Springer, Heildelberg, 1986. [Google Scholar]
  12. B. Perthame. Transport Equations in Biology. Birkhäuser Verlag, Basel, 2007. [Google Scholar]
  13. A.M. de Roos. Numerical methods for structured population models: The escalator boxcar train. Numer. Methods Partial Differential Equations, 4 (1988), 173–195. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Shen, C.W. ShuM.P. Zhang. A high order WENO scheme for a hierarchical size-structured population model. J. Sci. Comput., 33 (2007), 279–291. [CrossRef] [MathSciNet] [Google Scholar]
  15. G.F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, eds, New York, 1985. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.