Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 22 - 37
Published online 08 April 2010
  1. J. Anderson. A secular equation for the eigenvalues of a diagonal matrix perturbation. Linear Algebra Appl. 246 (1996), 49-70. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Baronchelli, M. Catanzaro, R. Pastor-Satorras. Bosonic reaction-diffusion processes on scale-free networks. Phys. Rev. E 78 (2008), 016111 [CrossRef] [Google Scholar]
  3. A. Berman, R.J. Plemmons. Nonnegative matrices in the mathematical sciences. SIAM, Classics in Applied Mathematics 9, Philadelphia, PA, 1994. [Google Scholar]
  4. M. Boguñá, R. Pastor-Satorras. Epidemic spreading in correlated complex networks. Phys.Rev.E 66 (2002), 047104 [Google Scholar]
  5. V. Colizza, R. Pastor-SatorrasA. Vespignani. Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3 (2007), 276–282. [CrossRef] [Google Scholar]
  6. V. Colizza, A. Vespignani. Invasion Threshold in Heterogeneous Metapopulation Networks. Phys. Rev. Lett. 99 (2007), 148701 [Google Scholar]
  7. V. ColizzaA. Vespignani. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. theor. Biol. 251 (2008), 450–467. [Google Scholar]
  8. P. C. Cross, P. L. F. Johnson, J. O. Lloyd-SmithW. M. Getz. Utility of R0 as a predictor of disease invasion in structured populations. J. R. Soc. Interface, 4 (2007), 315-324. [CrossRef] [PubMed] [Google Scholar]
  9. A. Fall, A. Iggidr, G. SalletJ.J. Tewa. Epidemiological models and Lyapunov functions. Math. Model. Nat. Phenom. 2 (2007), 62–83. [CrossRef] [EDP Sciences] [Google Scholar]
  10. L. Hufnagel, D. BrockmannT. Geisel. Forecast and control of epidemics in a globalized world. PNAS 101 (2004), 15124–15129. [Google Scholar]
  11. D. Juher, J. Ripoll, J. Saldaña. Analysis and Monte-Carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulations. Phys. Rev. E 80 (2009) 041920. [Google Scholar]
  12. M. J. Keeling, P. Rohani. Modeling infectious diseases in humans and animals. Princeton University Press, 2008. [Google Scholar]
  13. J. Li, X. Zou. Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment. J. Math. Biol. (2009) DOI 10.1007/s00285-009-0280-9 [Google Scholar]
  14. L. S. LiebovitchI. B. Schwartz. Migration induced epidemics: dynamics of flux-based multipatch models. Phys. Lett. A 332 (2004), 256–267. [CrossRef] [Google Scholar]
  15. M. E. J. Newman, S. H. Strogatz, D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64 (2001), 026118 [CrossRef] [Google Scholar]
  16. M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E 67 (2003), 026126 [CrossRef] [MathSciNet] [Google Scholar]
  17. Y.-A. Rho, L. S. LiebovitchI. B. Schwartz. Dynamical response of multi-patch, flux-based models to the input of infected people: Epidemic response to initiated events. Phys. Lett. A 372 (2008), 5017–5025. [Google Scholar]
  18. L.A. RvachevI.M. Longini. A mathematical model for the global spread of influenza. Math. Biosci. 75 (1985), 3-22. [Google Scholar]
  19. J. Saldaña. Continuous-time formulation of reaction-diffusion processes on heterogeneous metapopulations. Phys. Rev. E 78 (2008), 012902 [Google Scholar]
  20. W. WangX.-Q. Zhao. An epidemic model in a patchy environment. Math. Biosci. 190 (2004), 97–112. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.