Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 38 - 69
DOI https://doi.org/10.1051/mmnp/20105603
Published online 08 April 2010
  1. J.A. AlonsoL. Sanz. Aproximating the Distribution of Population Size in Stochastic Multiregional Matrix Models withFast Migration. Phil. Trans. R. Soc. A, 367 (2009), 4801-4827. [CrossRef]
  2. K. B. Athreya, P. E. Ney. Branching processes. Springer-Verlag, Berlin, 1972.
  3. P. Auger. Dynamics and Thermodynamics in Hierarchically Organized Systems, Applications in Physics, Biology and Economics. Pergamon Press, Oxford, 1989.
  4. P. AugerR. Roussarie. Complex ecological models with simple dynamics: from individuals to populations. Acta Biotheoretica, 42 (1994), 111-136. [CrossRef]
  5. P. AugerJ.C. Poggiale. Aggregation and Emergence in Systems of Ordinary Differential Equations. Mathematical Computer Modelling, 27 (1998), 1-22.
  6. P. Auger, M Rachid, C. Tanmay, S. Gauthier, T. MauriceC. Joydev. Effects of a disease affecting a predator on the dynamics of a predator-prey system. Journal of theoretical biology, 258 (2009), 344-351. [CrossRef] [MathSciNet] [PubMed]
  7. P. Auger, C. Lett. Integrative Biology: Linking Levels of Organization. Comptes Rendus de l’Académie des Sciences Biologies, 326 (2003):517-522. [CrossRef]
  8. P. Auger, R. Bravo de la Parra, J.C. Poggiale, E. SánchezL. Sanz. Aggregation methods in dynamical systems variables and applications in population and community dynamics. Physics of Life Reviews, 5 (2008), 79-105. [CrossRef]
  9. N. BerglundB. Gentz. Geometric singular perturbation theory for stochastic differential equations. J. Diff. Equat., 191 (2003), 1-54. [CrossRef]
  10. J.D. Biggins, H. CohnO. Nerman. Multi-type branching in varying environment. Stoc. Proc. Appl., 83 (1999), 357-400. [CrossRef]
  11. A. Blasco, L. Sanz, P. Auger, R. Bravo de la Parra. Linear Discrete Population Models with Two Time Scales in Fast Changing Environments I: Autonomous Case. Acta Biotheoretica, 49 (2001), 261-276. [CrossRef] [PubMed]
  12. A. Blasco, L. Sanz, P. AugerR. Bravo de la Parra. Linear Discrete Population Models with Two Time Scales in Fast Changing Environments II: Non Autonomous Case. Acta Biotheoretica, 1 (2002), 15-38. [CrossRef]
  13. A. Blasco, L. Sanz, R. Bravo de la Parra. Approximate reduction of multiregional birth-death models with fast migration. Mathematical and Computer Modelling, 36 (2002), 47-65. [CrossRef] [MathSciNet]
  14. G. L BlockL. J. S. Allen. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models. Bull. Math. Bio., 62 (2000), 199-228. [CrossRef]
  15. R. Bravo, P. AugerE. Sánchez. Aggregation methods in discrete Models, J. Biol. Sys., 3 (1995), 603-612. [CrossRef]
  16. R. Bravo de la Parra, E. Sánchez, O. ArinoP. Auger. A Discrete Model with Density Dependent Fast Migration. Mathematical Biosciences, 157 (1999), 91-110. [CrossRef] [MathSciNet] [PubMed]
  17. H. Caswell, M. FujiwaraS. Brault. Declining survival probability threatens the North Atlantic right whale. Proc. Natl. Acad. Sci. USA, 96 (1999), 3308-3313. [CrossRef]
  18. H. Caswell. Matrix population models (2nded.). Sinauer Associates, Sunderland, Massachusetts, 2001.
  19. S. Charles, R. Bravo de la Parra, J.P. Mallet, H. PersatP. Auger. Population dynamics modelling in an hierarchical arborescent river network: an attempt with Salmo trutta. Acta Biotheoretica, 46 (1998), 223-234. [CrossRef]
  20. S. Charles, R. Bravo de la Parra , J.P. Mallet, H. Persat, P. Auger. A density dependent model describing Salmo trutta population dynamics in an arborescent river network: effects of dams and channelling. C. R. Acad. Sci. Paris, Sciences de la vie, 321 (1998), 979-990.
  21. S. Charles, R. Bravo de la Parra, J.P. Mallet, H. PersatP. Auger. Annual spawning migrations in modeling brown trout population dynamics inside an arborescent river network. Ecological Modelling, 133 (2000), 15-31. [CrossRef]
  22. A. Chaumot, S. Charles, P. Flammarion, P. Auger. Do Migratory or Demographic Disruptions Rule the Population Impact of Pollution in Spatial Networks?. Theoretical Population Biology, 64 (2003), 473-480. [CrossRef] [PubMed]
  23. J. E. Cohen. Ergodicity of Age Structure in Populations with Markovian Vital Rates, II, General States. Advances in Appl. Probability, 9 (1977), 18-37. [CrossRef] [MathSciNet]
  24. J. E. Cohen. Ergodics Theorems of Demography. Bulletin of the American Mathematical Society N.S., 1 (1979), 275-295. [CrossRef]
  25. J. E. Cohen. Multiregional age structured populations with changing vital rates: weak and strong stochastic ergodic theorems. In Land, K.C., A. Rogers editors. Multiregional mathematical demography. Academic Press, New York, 477-503, 1982.
  26. J.E. Cohen, S.W. ChristensenC.P. Goodyear. A stochastic age-structured model of Striped Bass (Morone saxatilis) in the Potomac River. Can. J. Fish. Aquat. Sci., 40 (1983), 2170-2183. [CrossRef]
  27. H. FurstenbergH. Kesten. Products of Random Matrices. Ann. Math. Statist. 31 (1960), 457-469. [CrossRef] [MathSciNet]
  28. T.C. Gard. Aggregation in stochastic ecosystem models. Ecol. Modelling, 44 (1988), 153-164. [CrossRef]
  29. P. Haccou, P. Jagers, V. Vatutin. Branching processes: Variation, growth, and extinction of populations, Cambridge University Press, 2005.
  30. T. Harris. The theory of branching processes, Springer-Verlag, Berlín, 1963.
  31. C.C. Heyde, J. E. Cohen. Confidence Intervals for Demographic Projections Based on Products of Random Matrices. Theoretical Population Biology 27 (1985), 120-153. [CrossRef] [MathSciNet] [PubMed]
  32. K. E. Holsinger. Demography and extinction in small populations, in: Genetics, demography and the viability of fragmented populations, eds. A. Young, G. Clarke, Cambridge University Press, 2000.
  33. R. Horn, C. Johnson. Matrix Analysis. Cambridge Univ. Press, 1985.
  34. Y. Iwasa, V. AndreasenS. Levin. Aggregation in model ecosystems I: Perfect Aggregation. Ecological Modeling, 37 (1987), 287-302. [CrossRef]
  35. A. Joffe, F. Spitzer. On multitype branching processes with ρ ≤ 1. Journal of Mathematical Analysis and Its Applications, 19 (1967), 409-430. [CrossRef]
  36. M. Khaladi, V. GrosboisJ. D. Lebreton. An explicit approach to evolutionarily stable dispersal strategies with a cost of dispersal. Nonlinear Anal.: Real World Appl., 1 (2000), 137–144. [CrossRef] [MathSciNet]
  37. M. Kimmel, D.E. Axelrod. Branching Processes in Biology, Springer, New York, 2002.
  38. F. Klebaner, Population Size Dependent Processes. In: Branching Processes: Variation, Growth and Extinction of Populations, P. Haccou, P. Jagers and V.A. Vatutin, 133-135, Cambridge University Press, 2005.
  39. S. Legendre, J. Clobert, A. P. MollerG. Sorci. Demographic stochasticity and social mating system in the process of extinction of small populations: the case of passerines introduced to New Zealand. The American Naturalist, 153 (1999), 449-463. [CrossRef]
  40. C. Lett, P. AugerR. Bravo de la Parra. Migration Frequency and the Persistence of Host-Parasitoid Interactions. Journal of Theoretical Biology, 221 (2003), 639-654. [CrossRef] [MathSciNet] [PubMed]
  41. C. Lett, P. AugerF. Fleury. Effects of asymmetric dispersal and environmental gradients on the stability of host-parasitoid systems. Oikos, 109 (2005), 603-613. [CrossRef]
  42. K.L. Liaw. Multistate dynamics: the convergence of an age-by-region population system. Environment and Planning A, 12 (1980), 589-613. [CrossRef]
  43. L. Liaw. Spatial Popuylation Dynamics. In Migration and Settlement: A multiregional comparative study; A. Rogers, Willekens eds, 419-455. Dordrecht, D. Reidel, 1986.
  44. M. Marvá, E. Sánchez, R. Bravo de la ParraL. Sanz. Reduction of slow–fast discrete models coupling migration and demography. Journal of Theoretical Biology, 258 (2009), 371-379. [CrossRef] [PubMed]
  45. C.J. Mode. Multitype Branching Processes. Theory and Applications. American Elsevier Publishing Co., Inc., New York, 1971.
  46. M. A. Rincón, J.A. AlonsoL. Sanz. Supercritical multiregional stochastic models with fast migration. Acta Biotheoretica, 57 (2009), 479-500. [CrossRef] [PubMed]
  47. A. Rogers. Shrinking large-scale population projection models by aggregation and decomposition. Environment and Planning A, 8 (1976), 515-541. [CrossRef]
  48. A. Rogers. Multiregional Demography, Chichester, New York, 1995.
  49. J. M. Saboia. Arima models for birth forecasting. Journal of the American Statistical Association, 72 (1977), 264-270. [CrossRef]
  50. E. Sánchez, R. Bravo de la Parra, P. Auger. Linear discrete models with different time scales. Acta Bio., 43 (1995), 465-479.
  51. L. SanzR. Bravo de la Parra. Variables Aggregation in Time Varying Discrete Systems. Acta Biotheoretica, 46 (1998), 273-297. [CrossRef]
  52. L. SanzR. Bravo de la Parra. Variables aggregation in a time discrete linear model. Math. Biosc. 157 (1999), 111-146. [CrossRef] [MathSciNet] [PubMed]
  53. L. SanzR. Bravo de la Parra. Time scales in stochastic multiregional models. Nonlinear Analysis: Real World Applications, 1 (2000), 89-122. [CrossRef] [MathSciNet]
  54. L. SanzR. Bravo de la Parra. Time scales in a non autonomous linear discrete model. Mathematical Models and Methods in Applied Sciences, 11 (2001), 1-33. [CrossRef] [MathSciNet]
  55. L. Sanz, R. Bravo de la Parra. Approximate Reduction Techniques in Population Models with Two Time Scales: Study of the Approximation, Acta Biotheoretica, 50 (2002), 297-322. [CrossRef] [PubMed]
  56. L. Sanz, A. Blasco and R. Bravo de la Parra, Approximate reduction of Galton-Watson processes with two time scales, Mathematical Models and Methods in Applied Sciences 13:491-525, 2003. [CrossRef] [MathSciNet]
  57. L. SanzR. Bravo de la Parra. Approximate reduction of multiregional models with environmental stochasticity. Mathematical Biosciences, 206 (2007), 134-154. [CrossRef] [MathSciNet] [PubMed]
  58. L. Sanz, R. Bravo de la Parra, E. Sánchez. Approximate Reduction of Non-Linear Discrete Models with Two Time Scales. Journal of Difference Equations and Applications, 14 (2008), 607-627. [CrossRef] [MathSciNet]
  59. G.W. Stewart, J.I. Guang Sun. Matrix Perturbation Theory, Academic Press, Boston, 1990.
  60. Z. M. Sykes. Some stochastic versions of the matrix model for population dynamics. J. Amer. Statist. Assoc., 64 (1969), 111-130. [CrossRef] [MathSciNet]
  61. T. Nguyen-Huu, C. Lett, P. Auger P. J.C. Poggiale. Spatial synchrony in host-parasitoid models using aggregation of variables. Mathematical Biosciences, 203 (2006), 204-221. [CrossRef] [MathSciNet] [PubMed]
  62. T. Nguyen-Huu, P. Auger, C. Lett, M. Marvá. Emergence of global behaviour in a host-parasitoid model with density-dependent dispersal in a chain of patches. Ecological Complexity, 5 (2008), 9-21. [CrossRef]
  63. S. Tuljapurkar, S. Orzack. Population dynamics in variable environments. I. Long-run growth rates and extinction. Theor. Popul. Biol., 18 (1980) 314–342. [CrossRef]
  64. S. Tuljapurkar. Demography in stochastic environments. I. Exact distributions of age structure. J. Math. Biol., 19 (1984), 335-350. [MathSciNet] [PubMed]
  65. S. Tuljapurkar. Population Dynamics in Variable Environments, Springer-Verlag, Berlin, 1990.
  66. S. Tuljapurkar, H. Caswell (eds). Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, Chapman and Hall, New York, 1997.
  67. G. Wang, W. D. EdgeJ. O. Wolff. Demographic uncertainty in ecological risk assessments. Ecological Modelling, 136 (2001), 95-102. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.