Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 70 - 95
DOI https://doi.org/10.1051/mmnp/20105604
Published online 08 April 2010
  1. R. M. Anderson. The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. J. AIDS, 1 (1988), 241–256.
  2. R. M. AndersonR. M. May. Population Biology of Infectious Diseases. Part I. Nature, 280 (1979), 361–367. [CrossRef] [PubMed]
  3. R. M. Anderson, G. F. Medly, R. M. MayA. M. Johnson. A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J. Math. Appl. Med. Biol., 3 (1986), 229–263. [CrossRef] [MathSciNet] [PubMed]
  4. M. BacharA. Dorfmayr. HIV treatment models with time delay. C.R. Biologies, 327 (2004), 983–994. [CrossRef]
  5. BBC News (BBC). HIV reduces infection. September 2009, http://news.bbc.co.uk/2/hi/health/8272113.stm.
  6. S. Blower. Calculating the consequences: HAART and risky sex. AIDS, 15 (2001), 1309–1310. [CrossRef] [PubMed]
  7. F. Brauer. Models for the disease with vertical transmission and nonlinear population dynamics. Math. Biosci., 128 (1995), 13–24. [CrossRef] [PubMed]
  8. S. Busenberg, K. Cooke. Vertically transmitted diseases. Springer, Berlin, 1993.
  9. L. M. Cai, X. Li, M. GhoshB. Guo. Stability of an HIV/AIDS epidemic model with treatment. J. Comput. Appl. Math., 229 (2009), 313–323. [CrossRef] [MathSciNet]
  10. V. Capasso. Mathematical structures of epidemic systems, Lectures Notes in Biomathematics, Vol. 97. Springer-Verlag, Berlin, 1993.
  11. Centers for Disease Control and Prevention. HIV and its transmission. Divisions of HIV/AIDS Prevention, 2003.
  12. C. Connell McCluskey. A model of HIV/AIDS with staged progression and amelioration. Math. Biosci., 181 (2003), 1–16. [CrossRef] [MathSciNet] [PubMed]
  13. R. V. CulshawS. Ruan. A delay-differential equation model of HIV infection of CD4 + T-cells. Math. Biosci., 165 (2000), 27–39. [CrossRef] [PubMed]
  14. J. M. Cushing. Integrodifferential equations and delay models in population dynamics. Spring, Heidelberg, 1977.
  15. O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. John Wiley and Sons Ltd., Chichester, New York, 2000.
  16. E. H. ElbashaA. B. Gumel. Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits. Bull. Math. Biol., 68 (2006), 577–614. [CrossRef] [PubMed]
  17. J. EsparzaS. Osmanov. HIV vaccine: a global perspective. Curr. Mol. Med., 3 (2003), 183–193. [CrossRef] [PubMed]
  18. K. Gopalsamy. Stability and oscillations in delay-differential equations of population dynamics. Kluwer, Dordrecht, 1992.
  19. D. Greenhalgh, M. DoyleF. Lewis. A mathematical treatment of AIDS and condom use . IMA J. Math. Appl. Med. Biol., 18 (2001), 225–262. [CrossRef] [PubMed]
  20. A. B. Gumel, C. C. McCluskeyP. van den Driessche. Mathematical study of a staged-progression HIV model with imperfect vaccine. Bull. Math. Biol., 68 (2006), 2105–2128. [CrossRef] [MathSciNet] [PubMed]
  21. J. K. Hale, S. M. V. Lunel. Introduction to functional differential equations. Springer-Verlag, New York, 1993.
  22. A. V. M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. MayM. A. Nowak. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. Nat. Acad. Sci. USA, 93 (1996), 7247–7251. [CrossRef]
  23. G. HerzongR. Redheffer. Nonautonomous SEIRS and Thron models for epidemiology and cell biology. Nonlinear Anal.: RWA, 5 (2004), 33–44. [CrossRef]
  24. H. W. Hethcote, J. W. Van Ark. Modelling HIV transmission and AIDS in the United States, in: Lect. Notes Biomath., vol. 95. Springer, Berlin, 1992.
  25. Y. H. HsiehC. H. Chen. Modelling the social dynamics of a sex industry: Its implications for spread of HIV/AIDS. Bull. Math. Biol., 66 (2004), 143–166. [CrossRef] [MathSciNet] [PubMed]
  26. Y. H. HsiehK. Cooke. Behaviour change and treatment of core groups: its effect on the spread of HIV/AIDS. IMA J. Math. Appl. Med. Biol., 17 (2000), 213–241. [CrossRef] [PubMed]
  27. D. W. Jordan, P. Smith. Nonlinear ordinary differential equations. Oxford University Press, New York, 2004.
  28. W. O. KermackA. G. Mckendrick. Contributions to the mathematical theory of epidemics. Part I. Proc. R. Soc. A, 115 (1927), No. 5, 700–721. [CrossRef]
  29. Y. Kuang. Delay-differential equations with applications in population dynamics. Academic Press, New York, 1993.
  30. P. D. LeenheerH. L. Smith. Virus dynamics: a global analysis. SIAM. J. Appl. Math., 63 (2003), 1313–1327. [CrossRef] [MathSciNet]
  31. M. Y. Li, H. L. SmithL. Wang. Global dynamics of an SEIR epidemic with vertical transmission. SIAM. J. Appl. Math., 62 (2001), No. 1, 58–69. [CrossRef] [MathSciNet]
  32. M. C. I. Lipman, R. W. Baker, M. A. Johnson. An atlas of differential diagnosis in HIV disease. CRC Press-Parthenon Publishers, pp. 22-27, 2003.
  33. Z. Ma, Y. Zhou, W. Wang, Z. Jin. Mathematical modelling and research of epidemic dynamical systems. Science Press, Beijing, 2004.
  34. R. M. MayR. M. Anderson. Transmission dynamics of HIV infection. Nature, 326 (1987), 137–142. [CrossRef] [PubMed]
  35. Medical News Today, dated 9th February, 2007, East Sussex, TN 40 9BA, United Kingdom.
  36. X. Meng, L. ChenH. Cheng. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Appl. Math. Comput., 186 (2007), 516–529. [CrossRef] [MathSciNet]
  37. R. Naresh, A. TripathiS. Omar. Modelling the spread of AIDS epidemic with vertical transmission. Appl. Math. Comput., 178 (2006), 262–272. [MathSciNet]
  38. A. S. PerelsonP. W. Nelson. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev., 41 (1999), No. 1, 3–44. [CrossRef] [MathSciNet]
  39. A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. LeonardD. D. Ho. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science, 271 (1996), 1582–1586. [CrossRef] [PubMed]
  40. G. P. Samanta. Dynamic behaviour for a nonautonomous heroin epidemic model with time delay. J. Appl. Math. Comput., 2009, DOI 10.1007/s12190-009-0349-z.
  41. J. ShiverE. Emini. Recent advances in the development of HIV-1 vaccines using replication-incompetant adenovirus vectors. Ann. Rev. Med., 55 (2004), 355–372. [CrossRef]
  42. C. A. StoddartR. A. Reyes. Models of HIV-1 disease: A review of current status. Drug Discovery Today: Disease Models, 3 (2006), No. 1, 113–119. [CrossRef]
  43. Z. TengL. Chen. The positive periodic solutions of periodic Kolmogorov type systems with delays. Acta Math. Appl. Sin., 22 (1999), 446–456.
  44. H. R. Thieme. Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc. Am. Math. Soci., 127 (1999), 2395–2403. [CrossRef]
  45. H. R. Thieme. Uniform persistence and permanence for nonautonomous semiflows in population biology. Math. Biosci., 166 (2000), 173–201. [CrossRef] [MathSciNet] [PubMed]
  46. UNAIDS. 2007 AIDS epidemic update. WHO, December 2007.
  47. L. WangM. Y. Li. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T-cells. Math. Biosci., 200 (2006), 44–57. [CrossRef] [MathSciNet] [PubMed]
  48. K. Wang, W. WangX. Liu. Viral infection model with periodic lytic immune response. Chaos Solitons Fractals, 28 (2006), No. 1, 90–99. [CrossRef] [MathSciNet]
  49. Wikipedia. HIV vaccine. September, 2009, http://en.wikipedia.org/wiki/HIV_vaccine.
  50. T. ZhangZ. Teng. On a nonautonomous SEIRS model in epidemiology. Bull. Math. Biol., 69 (2007), 2537–2559. [CrossRef] [MathSciNet] [PubMed]
  51. T. ZhangZ. Teng. Permanence and extinction for a nonautonomous SIRS epidemic model with time delay. Appl. Math. Model., 33 (2009), 1058–1071. [CrossRef] [MathSciNet]
  52. R. M. Zinkernagel. The challenges of an HIV vaccine enterprise. Science, 303 (2004), 1294–1297. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.