Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 96 - 108
DOI https://doi.org/10.1051/mmnp/20105605
Published online 08 April 2010
  1. R. E. BaughnD. M. Musher. Secondary syphilitic lesions. Clin. Microbiol. Rev., 18 (2005), 205-216. [CrossRef] [PubMed] [Google Scholar]
  2. R. Breban, V. Supervie, J. T. Okano, R. Vardavas, and S. Blower. The transmission dynamics of syphilis and the CDC’s elimination plan. Available from Nature Proceedings 〈 http://dx.doi.org/0.1038/npre.2007.1373.1 ⟩ (2007). [Google Scholar]
  3. R. Breban, V. Supervie, J. T. Okano, R. Vardavas, and S. Blower. Is there any evidence that syphilis epidemics cycle? Lancet Infect. Dis. 8 (2008), 577-581. [CrossRef] [PubMed] [Google Scholar]
  4. Centers for Disease Control and Prevention. The National Plan to Eliminate Syphilis from the United States, 2006, http://www.cdc.gov/stopsyphilis/plan.htm. [Google Scholar]
  5. O. Diekmann, J. A. P. HeesterbeekJ. A. J. and Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectionus diseases in heterogeneous populations. J. Math. Biol. 28 (1990), 365-382. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. L. Doherty, K. A. Fenton, J. Jones, T. C. Paine, S. P. Higgins, D. WilliamsA. and Palfreeman. Syphilis: old problem, new strategy. BMJ, 325 (2002), 153-156. [CrossRef] [PubMed] [Google Scholar]
  7. J. Dushoff, W. HuangC. and Castillo-Chavez. Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol., 36 (1998), 227-248. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. G. P. Garnett, S. O. Aral, D. V. Hoyle, W. CatesR. M. and Anderson. The natural history of syphilis: implications for the trasmission dynamics and control of infection. Sex. Transm. Dis., 24 (1997), 185-200. [CrossRef] [PubMed] [Google Scholar]
  9. M. G. M. Gomes, A. O. Franco, M. C. GomesG. F. and Medley. The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy. Proc. Biol. Sci., 271 (2004), 617-623. [CrossRef] [PubMed] [Google Scholar]
  10. M. G. M. Gomes, A. Margheri, G. F. MedleyC. and Rebelo. Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence. J. Math. Biol., 51 (2005), 414-430. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. M. G. M. Gomes, L. J. WhiteG. F. and Medley. Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. Journal of Theoretical Biology, 228 (2004), 539-549. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. D. Gökaydin, J. B. Oliveira-Martins, I. GordoM. G. M. and Gomes. The reinfection threshold regulates pathogen diversity: the case of influenza. J. R. Soc. Interface, 4 (2007), 137-142. [CrossRef] [PubMed] [Google Scholar]
  13. N. C. Grassly, C. FraserG. P. and Garnett. Host immunity and synchronized epidemics of syphilis across the United States. Nature, 433 (2005), 417-421. [CrossRef] [PubMed] [Google Scholar]
  14. K.P. HadelerP. Van den Driessche. Backward bifurcation in epidemic control. Mathematical Biosciences, 146 (1997), 15-35. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. A. K. Hurtig, A. Nicoll, C. Carne, T. Lissauer, N. Connor, J. P. WebsterL. and Ratcliffe. Syphilis in pregnant women and their children in the United Kingdom: results from national clinician reporting surveys 1994-7. BMJ, 317 (1998), 1617-1619. [PubMed] [Google Scholar]
  16. R. E. LaFondS. A. Lukehart. Biological basis for syphilis. Clin. Microbiol. Rev., 19 (2006), 29-49. [CrossRef] [PubMed] [Google Scholar]
  17. C. A. Morgan, S. A. LukehartW. C. and Van Voorhis. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect. Immun. 71 (2003), 5605-5612. [CrossRef] [PubMed] [Google Scholar]
  18. M. Myint, H. Bashiri, R. D. HarringtonC. M. and Marra. Relapse of secondary syphilis after Benzathine Penicillin G: molecular analysis. Sex. Transm. Dis., 31 (2004), 196-199. [CrossRef] [PubMed] [Google Scholar]
  19. G. L. Oxman, K. SmolkowskiJ. and Noell. Mathematical modeling of epidemic syphilis transmission: implications for syphilis control programs. Sex. Transm. Dis., 23 (1996), 30-39. [CrossRef] [PubMed] [Google Scholar]
  20. T. Parran. Syphilis: a public health problem. Science, 87 (1938), 147-152. [CrossRef] [PubMed] [Google Scholar]
  21. B. Pourbohloul, M. L. RekartR. C. and Brunham. Impact of mass treatment on syphilis transmission: a mathematical modeling approach. Sex. Transm. Dis., 30 (2003), 297-305. [CrossRef] [PubMed] [Google Scholar]
  22. T. C. RelugaJ. Medlock. Resistance mechanisms matter in SIR models. Math Biosci Eng., 4 (2007), 553-563. [MathSciNet] [PubMed] [Google Scholar]
  23. P. van den DriesscheJ. Watmough. Reproduction numbers and sub-shreshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180 (2002), 29-48. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.