Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 96 - 108
DOI https://doi.org/10.1051/mmnp/20105605
Published online 08 April 2010
  1. R. E. BaughnD. M. Musher. Secondary syphilitic lesions. Clin. Microbiol. Rev., 18 (2005), 205-216. [CrossRef] [PubMed]
  2. R. Breban, V. Supervie, J. T. Okano, R. Vardavas, and S. Blower. The transmission dynamics of syphilis and the CDC’s elimination plan. Available from Nature Proceedings 〈 http://dx.doi.org/0.1038/npre.2007.1373.1 ⟩ (2007).
  3. R. Breban, V. Supervie, J. T. Okano, R. Vardavas, and S. Blower. Is there any evidence that syphilis epidemics cycle? Lancet Infect. Dis. 8 (2008), 577-581. [CrossRef] [PubMed]
  4. Centers for Disease Control and Prevention. The National Plan to Eliminate Syphilis from the United States, 2006, http://www.cdc.gov/stopsyphilis/plan.htm.
  5. O. Diekmann, J. A. P. HeesterbeekJ. A. J. and Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectionus diseases in heterogeneous populations. J. Math. Biol. 28 (1990), 365-382. [CrossRef] [MathSciNet] [PubMed]
  6. L. Doherty, K. A. Fenton, J. Jones, T. C. Paine, S. P. Higgins, D. WilliamsA. and Palfreeman. Syphilis: old problem, new strategy. BMJ, 325 (2002), 153-156. [CrossRef] [PubMed]
  7. J. Dushoff, W. HuangC. and Castillo-Chavez. Backwards bifurcations and catastrophe in simple models of fatal diseases. J. Math. Biol., 36 (1998), 227-248. [CrossRef] [MathSciNet] [PubMed]
  8. G. P. Garnett, S. O. Aral, D. V. Hoyle, W. CatesR. M. and Anderson. The natural history of syphilis: implications for the trasmission dynamics and control of infection. Sex. Transm. Dis., 24 (1997), 185-200. [CrossRef] [PubMed]
  9. M. G. M. Gomes, A. O. Franco, M. C. GomesG. F. and Medley. The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy. Proc. Biol. Sci., 271 (2004), 617-623. [CrossRef] [PubMed]
  10. M. G. M. Gomes, A. Margheri, G. F. MedleyC. and Rebelo. Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence. J. Math. Biol., 51 (2005), 414-430. [CrossRef] [MathSciNet] [PubMed]
  11. M. G. M. Gomes, L. J. WhiteG. F. and Medley. Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. Journal of Theoretical Biology, 228 (2004), 539-549. [CrossRef] [MathSciNet] [PubMed]
  12. D. Gökaydin, J. B. Oliveira-Martins, I. GordoM. G. M. and Gomes. The reinfection threshold regulates pathogen diversity: the case of influenza. J. R. Soc. Interface, 4 (2007), 137-142. [CrossRef] [PubMed]
  13. N. C. Grassly, C. FraserG. P. and Garnett. Host immunity and synchronized epidemics of syphilis across the United States. Nature, 433 (2005), 417-421. [CrossRef] [PubMed]
  14. K.P. HadelerP. Van den Driessche. Backward bifurcation in epidemic control. Mathematical Biosciences, 146 (1997), 15-35. [CrossRef] [MathSciNet] [PubMed]
  15. A. K. Hurtig, A. Nicoll, C. Carne, T. Lissauer, N. Connor, J. P. WebsterL. and Ratcliffe. Syphilis in pregnant women and their children in the United Kingdom: results from national clinician reporting surveys 1994-7. BMJ, 317 (1998), 1617-1619. [PubMed]
  16. R. E. LaFondS. A. Lukehart. Biological basis for syphilis. Clin. Microbiol. Rev., 19 (2006), 29-49. [CrossRef] [PubMed]
  17. C. A. Morgan, S. A. LukehartW. C. and Van Voorhis. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect. Immun. 71 (2003), 5605-5612. [CrossRef] [PubMed]
  18. M. Myint, H. Bashiri, R. D. HarringtonC. M. and Marra. Relapse of secondary syphilis after Benzathine Penicillin G: molecular analysis. Sex. Transm. Dis., 31 (2004), 196-199. [CrossRef] [PubMed]
  19. G. L. Oxman, K. SmolkowskiJ. and Noell. Mathematical modeling of epidemic syphilis transmission: implications for syphilis control programs. Sex. Transm. Dis., 23 (1996), 30-39. [CrossRef] [PubMed]
  20. T. Parran. Syphilis: a public health problem. Science, 87 (1938), 147-152. [CrossRef] [PubMed]
  21. B. Pourbohloul, M. L. RekartR. C. and Brunham. Impact of mass treatment on syphilis transmission: a mathematical modeling approach. Sex. Transm. Dis., 30 (2003), 297-305. [CrossRef] [PubMed]
  22. T. C. RelugaJ. Medlock. Resistance mechanisms matter in SIR models. Math Biosci Eng., 4 (2007), 553-563. [MathSciNet] [PubMed]
  23. P. van den DriesscheJ. Watmough. Reproduction numbers and sub-shreshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180 (2002), 29-48. [CrossRef] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.