Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 109 - 138
DOI https://doi.org/10.1051/mmnp/20105606
Published online 08 April 2010
  1. L.J.S. Allen, M. LanglaisC.J. Phillips. The dynamics of two viral infections in a single host population with applications to hantavirus. Math. Biosci., 186 (2003), 191–217. [CrossRef] [MathSciNet] [PubMed]
  2. R.M. Anderson, H.C. Jackson, R.M. MayA.D.M. Smith. Population dynamics of fox rabies in Europe. Nature, 289 (1981), 765–771. [CrossRef] [PubMed]
  3. V. Andreasen. Multiple times scales in the dynamics of infectious diseases. Mathematical Approaches to Problems in Resource Management and Epidemiology (C. Castillo-Chavez, S.A. Levin, C.A. Shoemaker, eds.), 142–151, Springer, Berlin Heidelberg, 1989.
  4. V. Andreasen, J. LinS.A. Levin. The dynamics of cocirculating influenza strains conferring partial cross-immunity. J. Math. Biol., 35 (1997), 825–842. [CrossRef] [MathSciNet] [PubMed]
  5. C. Banerjee, L.J.S. AllenJ. Salazar-Bravo. Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Math. Biosci. Engin., 5 (2008), 617–645. [CrossRef]
  6. F.B. Bang. Epidemiological interference. Intern. J. Epidemiology, 4 (1975), 337–342. [CrossRef]
  7. C.J. BriggsH.C.J. Godfray. The dynamics of insect-pathogen interactions in stage-structured populations. The American Naturalist, 145 (1995), 855–887. [CrossRef]
  8. C. Castillo-Chavez, H.W. Hethcote, V. Andreasen, S.A. LevinW.M. Liu. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol., 27 (1989), 233–258. [CrossRef] [MathSciNet] [PubMed]
  9. T. Dhirasakdanon, H.R. Thieme. Persistence of vertically transmitted parasite strains which protect against more virulent horizontally transmitted strains. Modeling and Dynamics of Infectious Diseases (Z. Ma, Y. Zhou, J. Wu, eds.), 187–215, World Scientific, Singapore, 2009.
  10. O. DiekmannM. Kretzschmar. Patterns in the effects of infectious diseases on population growth. J. Math. Biol., 29 (1991), 539–570. [CrossRef] [MathSciNet] [PubMed]
  11. K. Dietz. Epidemiologic interference of virus populations. J. Math. Biol., 8 (1979), 291–300. [MathSciNet] [PubMed]
  12. K. Dietz. Overall population patterns in the transmission cycle of infectious disease agents. Population Biology of Infectious Diseases (R.M. Anderson, R.M. May, eds.), 87–102, Springer, Dahlem Konferenzen, Berlin, 1982.
  13. S.H. Faeth, K.P. HadelerH.R. Thieme. An apparent paradox of horizontal and vertical disease transmission. J. Biol. Dyn., 1 (2007), 45–62. [CrossRef] [MathSciNet] [PubMed]
  14. Z. FengH.R. Thieme. Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math. Biosci., 128 (1995), 93–130. [CrossRef] [MathSciNet] [PubMed]
  15. Z. FengH.R. Thieme. Endemic models with arbitrarily distributed periods of infection. II. Fast disease dynamics and permanent recovery. SIAM J. Appl. Math., 61 (2000), 983–1012. [CrossRef] [MathSciNet]
  16. L.Q. Gao, J. Mena-Lorca, H.W. Hethcote. Variations on a theme of SEI endemic models. Differential Equations and Applications to Biology and Industry (M. Martelli, C.L. Cooke, E. Cumberbatch, B. Tang, H.R. Thieme, eds.), 191–207, World Scientific, Singapore, 1996.
  17. W.M. GetzJ. Pickering. Epidemic models: thresholds and population regulation. The American Naturalist, 121 (1983), 892–898. [CrossRef]
  18. D. Greenhalgh. Some results for an SEIR epidemic model with density dependence in the death rate. IMA J. Math. Appl. Med. Biol., 9 (1992), 67–106. [CrossRef] [MathSciNet] [PubMed]
  19. D. Greenhalgh. Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity. Math. Comput. Modelling, 25 (1997), 85–107. [CrossRef] [MathSciNet]
  20. J.V. GreenmanP.J. Hudson. Infected coexistence instability with and without density-dependent regulation. J. Theor. Biol., 185 (1997), 345–356. [CrossRef]
  21. E.R. Haine. Symbiont-mediated protection. Proc. R. Soc. B, 275 (2008), 353–361. [CrossRef]
  22. H.W. Hethcote, S.A. Levin. Periodicity in epidemiological models. Applied Mathematical Ecology (S.A. Levin, T.G. Hallam, L.J. Gross, eds.), 193–211, Springer, Berlin Heidelberg, 1989.
  23. H.W. Hethcote, H.W. StechP. van den Driessche. Nonlinear oscillations in epidemic models. SIAM J. Appl. Math., 40 (1981), 1–9. [CrossRef] [MathSciNet]
  24. H.W. Hethcote, W. WangY. Li. Species coexistence and periodicity in host-host-pathogen models. J. Math. Biol., 51 (2005), 629–660. [CrossRef] [MathSciNet] [PubMed]
  25. H.W. HethcoteJ. Pickering. Infectious disease and species coexistence: a model of Lotka-Volterra form. Am. Nat., 126 (1985), 196–211. [CrossRef]
  26. M. Iannelli, M. MartchevaX.-Z. Li. Strain replacement in an epidemic model with super-infection and perfect vaccination. Math. Biosci., 195 (2005), 23–46. [CrossRef] [MathSciNet] [PubMed]
  27. J. Li, Y. Zhou, Z. MaJ.M. Hyman. Epidemiological models for mutating pathogens. SIAM J. Appl. Math., 65 (2004), 1–23. [CrossRef] [MathSciNet]
  28. J. Lin, V. AndreasenS.A. Levin. Dynamics of influenza A drift: the linear three-strain model. Math. Biosci., 162 (1999), 33–51. [CrossRef] [MathSciNet] [PubMed]
  29. M. Lipsitch, S. SillerM.A. Nowak. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution, 50 (1996), 1729–1741. [CrossRef] [PubMed]
  30. W.-m. Liu. Dose-dependent latent period and periodicity of infectious diseases. J. Math. Biol., 31 (1993), 487–494. [PubMed]
  31. C.M. Lively, K. Clay, M.J. WadeC. Fuqua. Competitive co-existence of vertically and horizontally transmitted diseases. Evolutionary Ecology Res., 7 (2005), 1183–1190.
  32. M. Martcheva. On the mechanisms with strain replacement in epidemic models with vaccination. Current Developments in Mathematical Biology (R.C. John Boucher, K. Mahdavi, eds.), 149–165, World Scientific, Hackensack, 2007.
  33. M. MartchevaS.S. Pilyugin. The role of coinfection in multidisease dynamics. SIAM J. Appl. Math., 66 (2006), 843–872. [CrossRef] [MathSciNet]
  34. G. MeijerA. Leuchtmann. The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloë sylvatica. OIKOS, 91 (2000), 446–458. [CrossRef]
  35. F.A. MilnerA. Pugliese. Periodic solutions: a robust numerical method for an S-I-R model of epidemics. J. Math. Biol., 39 (1999), 471–492. [CrossRef] [MathSciNet] [PubMed]
  36. M. Nuño, Z. Feng, M. MartchevaC. Castillo-Chavez. Dynamics of two-strain influenza with isolation and partial cross-immunity. SIAM J. Appl. Math., 65 (2005), 964–982. [CrossRef] [MathSciNet]
  37. A. Pugliese. An SEI epidemic model with varying population size. Differential Equations Models in Biology, Epidemiology and Ecology (S. Busenberg, M. Martelli, eds.), 121–138, Springer, Berlin Heidelberg, 1991.
  38. K. Saikkonen, S.H. Faeth, M. HelanderT.J. Sullivan. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst., 29 (1998), 319–343. [CrossRef]
  39. J.H. Swart. Hopf bifurcation and stable limit cycle behavior in the spread of infectious disease, with special application to fox rabies. Math. Biosci., 95 (1989), 199–207. [CrossRef] [MathSciNet] [PubMed]
  40. H.R. Thieme. Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases. Differential Equations Models in Biology, Epidemiology and Ecology (S. Busenberg, M. Martelli, eds.), 139–158, Springer, Berlin Heidelberg, 1991.
  41. H.R. Thieme. Mathematics in Population Biology. Princeton University Press, Princeton, 2003.
  42. H.R. ThiemeC. Castillo-Chavez. How may infection-age dependent infectivity affect the dynamics of HIV/AIDS?. SIAM J. Appl. Math., 53 (1993), 1447–1479. [CrossRef] [MathSciNet]
  43. H.R. Thieme, A. TridaneY. Kuang. An epidemic model with post-contact prophylaxis of distributed length. II. Stability and oscillations if treatment is fully effective. Math. Model. Nat. Phenom., 3 (2008), 267–293. [CrossRef] [EDP Sciences] [MathSciNet]
  44. P. van den DriesscheM.L. Zeeman. Disease induced oscillations between two competing species. SIAM J. Appl. Dyn. Sys., 3 (2004), 601–619. [CrossRef]
  45. E. Venturino. The effects of diseases on competing species. Math. Biosci., 174 (2001), 111–131. [CrossRef] [MathSciNet] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.