Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 139 - 158
DOI https://doi.org/10.1051/mmnp/20105607
Published online 08 April 2010
  1. J. Alroy. Cope’s rule and the dynamics of body mass evolution in north american fossil mammals. Science, 280 (1998), 731-734. [CrossRef] [PubMed]
  2. L.A. Nunes AmaralM. Meyer. Environmental changes, coextinction, and patterns in the fossil record. Phys. Rev. Lett., 82 (1999), 652-655. [CrossRef]
  3. P. BakK. Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett., 71 (1993), 4083-4086. [CrossRef] [PubMed]
  4. U. Brose, et al. Consumer-resource body-size relationships in natural food webs. Ecology, 87 (2006), 24112417.
  5. J. Camacho, R. Guimerà, L.A. Nunes Amaral. Analytical solution of a model for complex food webs. Phys. Rev. E, 65 (2002), 030901(R).
  6. J. Camacho, R. Guimerà, L.A. Nunes Amaral. Robust patterns in food web structure. Phys. Rev. Lett., 88 (2002), 228102. [CrossRef] [PubMed]
  7. M.-F. Cattin, L.-F. Bersier, C. Banašek-Richter, R. BaltenspergerJ.-P. Gabriel. Phylogenetic constraints and adaptation explain food-web structure. Nature, 427 (2004), 835-839. [CrossRef] [PubMed]
  8. K. Christensen, S.A. Di Collobiano, M. HallH.J. Jenssen. Tangled Nature: A model of evolutionary ecology. J. Theor. Biol., 216 (2002), 73-84. [CrossRef] [PubMed]
  9. A. ClausetD.E. Erwin. The evolution and distribution of species body size. Science, 321 (2008), 399-401. [CrossRef] [PubMed]
  10. J.E. Cohen, S.L. Pimm, P. YodzisJ. Saldaña. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol., 62 (1993), 67-78. [CrossRef]
  11. B. Drossel. Extinction events and species lifetimes in a simple ecological model. Phys. Rev. Lett., 81 (1998), 5011-5014. [CrossRef]
  12. B. Drossel. Biological evolution and statistical physics. Adv. Phys., 50 (2001), 209-295. [CrossRef]
  13. B. Drossel, P.G. HiggsA.J. McKane. The influence of predator-prey dynamics on the long-term evolution of food web structure. J. Theor. Biol., 208 (2001), 91-107. [CrossRef] [PubMed]
  14. B. Drossel, A.J. McKaneC. Quince. The impact of nonlinear functional responses on the long-term evolution of food web structure. J. Theor. Biol., 229 (2004), 539-548. [CrossRef] [PubMed]
  15. J.A. Dunne, R.J. WilliamsN.D. Martinez. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser., 273 (2004), 291-302. [CrossRef]
  16. N. Eldredge, S.J. Gould. In: Models in Paleobiology, Schopf, T.J.M. (Ed.), Freeman, San Francisco, 1972.
  17. J.L. Garcia-DomingoJ. Saldaña. Food-web complexity emerging from ecological dynamics on adaptive networks. J. Theor. Biol., 247 (2007), 819-826. [CrossRef] [MathSciNet] [PubMed]
  18. S.J. GouldN. Eldredge. Punctuated equilibrium comes of age. Nature, 366 (1993), 223-227. [CrossRef] [PubMed]
  19. C. GuillB. Drossel. Emergence of complexity in evolving niche model food webs. J. Theor. Biol., 251 (2008), 108-120. [CrossRef] [PubMed]
  20. G. Hardin. The competitive exclusion principle. Science, 131 (1960), 1292-1297. [CrossRef] [PubMed]
  21. D.W.E. Hone, M.J. Benton. The evolution of large size: how does Cope’s rule work? Tr. Ecol. Evol., 20 (2005), 4-6. [CrossRef]
  22. N. LoeuilleM. Loreau. Evolutionary emergence of size-structured food webs. Proc. Nat. Acad. Sci., 102 (2005), 5761-5766. [CrossRef]
  23. B. Kartascheff, C. GuillB. Drossel. Positive complexity-stability relations in food web models without foraging adaptation. J. Theor. Biol., 259 (2009), 12-23. [CrossRef] [PubMed]
  24. S.A. KauffmanS. Johnsen. Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theor. Biol., 149 (1991), 467-505. [CrossRef] [PubMed]
  25. M. Kondoh. Foraging adaptation and the relationship between food-web complexity and stability. Science, 299 (2003), 1388-1391. [CrossRef] [PubMed]
  26. M. Kondoh. Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? J. Theor. Biol., 238 (2006), 646-651. [CrossRef] [PubMed]
  27. R.M. May. Unanswered questions in ecology. Phil. Trans. R. Soc. Lond. B, 354 (1999), 1951-1959. [CrossRef]
  28. M.E.J. Newman. Self-organized criticality, evolution and the fossil extinction record. Proc. R. Soc. Lond. B, 263 (1996), 1605-1610. [CrossRef]
  29. M.E.J. Newman. A model of mass extinction. J. Theor. Biol., 189 (1997), 235-252. [CrossRef] [PubMed]
  30. M.E.J. Newman, R.G. Palmer. Models of Extinction: A Review. arXiv:adap-org/ 9908002v1 (1999).
  31. M. Paczuski, S. MaslovP. Bak. Avalanche dynamics in evolution, growth, and depinning models. Phys. Rev. E, 53 (1996), 414-443. [CrossRef]
  32. D.M. Raup. Biological extinction in earth history. Science, 231 (1986), 1528-1533. [CrossRef] [PubMed]
  33. D.M. Raup. A kill curve for phanerozoic marine species. Paleobiology, 17 (1991), 37-48. [PubMed]
  34. P.A. Rikvold. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution. J. Math. Biol., 55 (2007), 653-677. [CrossRef] [MathSciNet] [PubMed]
  35. P.A. Rikvold, V. Sevim. Individual-based predator-prey model for biological coevolution: Fluctuations, stability, and community structure. Phys. Rev. E, 75 (2007), 051920. [CrossRef] [MathSciNet]
  36. P.A. Rikvold. Complex dynamics in coevolution models with ratio-dependent functional response. Ecol. Comp. (2009), in press.
  37. A.G. Rossberg, H. Matsuda, T. AmemiyaK. Itoh. An explanatory model for food-web structure and evolution. Ecol. Comp., 2 (2005), 312-321. [CrossRef]
  38. A.G. Rossberg, H. Matsuda, T. AmemiyaK. Itoh. Food webs: Experts consuming families of experts. J. Theor. Biol., 241 (2006), 552-563. [CrossRef] [PubMed]
  39. A.G. Rossberg, R. Ishii, T. AmemiyaK. Itoh. The top-down mechanism for body-mass-abundance scaling. Ecology, 89 (2008), 567-580. [CrossRef] [PubMed]
  40. F. SlaninaM. Kotrla. Extremal dynamics model on evolving networks. Phys. Rev. Lett., 83 (1999), 5587-5590. [CrossRef]
  41. R.V. Solé, J. Bascompte. Are critical phenomena relevant to large-scale evolution? Proc. R. Soc. Lond. B, 263 (1996), 161-168. [CrossRef]
  42. R.V. SoléS.C. Manrubia. Extinction and self-organized criticality in a model of large-scale evolution. Phys. Rev. E, 54 (1996), R42-R45. [CrossRef]
  43. R.V. Solé, S.C. Manrubia, M. BentonP. Bak. Self-similarity of extinction statistics in the fossil record. Nature, 388 (1997), 764-767. [CrossRef]
  44. D.B. Stouffer, J. Camacho, R. Guimerà, C.A. NgL.A. Nunes Amaral. Quantitative patterns in the structure of model and empirical food webs. Ecology, 86 (2005), 1301-1311. [CrossRef]
  45. D.B. Stouffer, J. CamachoL.A. Nunes Amaral. A robust measure of food web intervality. Proc. Nat. Acad. Sci., 103 (2006), 19015-19020. [CrossRef]
  46. S. Uchida, B. DrosselU. Brose. The structure of food webs with adaptive behaviour. Ecol. Mod., 206 (2007), 263-276. [CrossRef]
  47. P.H. Warren, J.H. Lawton. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia, 74 (1987), 231-235. [CrossRef] [PubMed]
  48. E.P. White, B.J. EnquistJ.L. Green. On estimating the exponent of power-law frequency distributions. Ecology, 89 (2008), 905-912. [CrossRef] [PubMed]
  49. R.J. WilliamsN.D. Martinez. Simple rules yield complex food webs. Nature, 404 (2000), 180-183. [CrossRef] [PubMed]
  50. R.J. WilliamsN.D. Martinez. Success and its limits among structural models of complex food webs. J. Anim. Ecol., 77 (2008), 512-519. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.