Free Access
Issue
Math. Model. Nat. Phenom.
Volume 5, Number 6, 2010
Ecology (Part 2)
Page(s) 139 - 158
DOI https://doi.org/10.1051/mmnp/20105607
Published online 08 April 2010
  1. J. Alroy. Cope’s rule and the dynamics of body mass evolution in north american fossil mammals. Science, 280 (1998), 731-734. [CrossRef] [PubMed] [Google Scholar]
  2. L.A. Nunes AmaralM. Meyer. Environmental changes, coextinction, and patterns in the fossil record. Phys. Rev. Lett., 82 (1999), 652-655. [CrossRef] [Google Scholar]
  3. P. BakK. Sneppen. Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett., 71 (1993), 4083-4086. [CrossRef] [PubMed] [Google Scholar]
  4. U. Brose, et al. Consumer-resource body-size relationships in natural food webs. Ecology, 87 (2006), 24112417. [Google Scholar]
  5. J. Camacho, R. Guimerà, L.A. Nunes Amaral. Analytical solution of a model for complex food webs. Phys. Rev. E, 65 (2002), 030901(R). [Google Scholar]
  6. J. Camacho, R. Guimerà, L.A. Nunes Amaral. Robust patterns in food web structure. Phys. Rev. Lett., 88 (2002), 228102. [CrossRef] [PubMed] [Google Scholar]
  7. M.-F. Cattin, L.-F. Bersier, C. Banašek-Richter, R. BaltenspergerJ.-P. Gabriel. Phylogenetic constraints and adaptation explain food-web structure. Nature, 427 (2004), 835-839. [CrossRef] [PubMed] [Google Scholar]
  8. K. Christensen, S.A. Di Collobiano, M. HallH.J. Jenssen. Tangled Nature: A model of evolutionary ecology. J. Theor. Biol., 216 (2002), 73-84. [CrossRef] [PubMed] [Google Scholar]
  9. A. ClausetD.E. Erwin. The evolution and distribution of species body size. Science, 321 (2008), 399-401. [CrossRef] [PubMed] [Google Scholar]
  10. J.E. Cohen, S.L. Pimm, P. YodzisJ. Saldaña. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol., 62 (1993), 67-78. [CrossRef] [Google Scholar]
  11. B. Drossel. Extinction events and species lifetimes in a simple ecological model. Phys. Rev. Lett., 81 (1998), 5011-5014. [CrossRef] [Google Scholar]
  12. B. Drossel. Biological evolution and statistical physics. Adv. Phys., 50 (2001), 209-295. [CrossRef] [Google Scholar]
  13. B. Drossel, P.G. HiggsA.J. McKane. The influence of predator-prey dynamics on the long-term evolution of food web structure. J. Theor. Biol., 208 (2001), 91-107. [CrossRef] [PubMed] [Google Scholar]
  14. B. Drossel, A.J. McKaneC. Quince. The impact of nonlinear functional responses on the long-term evolution of food web structure. J. Theor. Biol., 229 (2004), 539-548. [CrossRef] [PubMed] [Google Scholar]
  15. J.A. Dunne, R.J. WilliamsN.D. Martinez. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser., 273 (2004), 291-302. [CrossRef] [Google Scholar]
  16. N. Eldredge, S.J. Gould. In: Models in Paleobiology, Schopf, T.J.M. (Ed.), Freeman, San Francisco, 1972. [Google Scholar]
  17. J.L. Garcia-DomingoJ. Saldaña. Food-web complexity emerging from ecological dynamics on adaptive networks. J. Theor. Biol., 247 (2007), 819-826. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  18. S.J. GouldN. Eldredge. Punctuated equilibrium comes of age. Nature, 366 (1993), 223-227. [CrossRef] [PubMed] [Google Scholar]
  19. C. GuillB. Drossel. Emergence of complexity in evolving niche model food webs. J. Theor. Biol., 251 (2008), 108-120. [CrossRef] [PubMed] [Google Scholar]
  20. G. Hardin. The competitive exclusion principle. Science, 131 (1960), 1292-1297. [CrossRef] [PubMed] [Google Scholar]
  21. D.W.E. Hone, M.J. Benton. The evolution of large size: how does Cope’s rule work? Tr. Ecol. Evol., 20 (2005), 4-6. [CrossRef] [Google Scholar]
  22. N. LoeuilleM. Loreau. Evolutionary emergence of size-structured food webs. Proc. Nat. Acad. Sci., 102 (2005), 5761-5766. [CrossRef] [Google Scholar]
  23. B. Kartascheff, C. GuillB. Drossel. Positive complexity-stability relations in food web models without foraging adaptation. J. Theor. Biol., 259 (2009), 12-23. [CrossRef] [PubMed] [Google Scholar]
  24. S.A. KauffmanS. Johnsen. Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. J. Theor. Biol., 149 (1991), 467-505. [CrossRef] [PubMed] [Google Scholar]
  25. M. Kondoh. Foraging adaptation and the relationship between food-web complexity and stability. Science, 299 (2003), 1388-1391. [CrossRef] [PubMed] [Google Scholar]
  26. M. Kondoh. Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? J. Theor. Biol., 238 (2006), 646-651. [CrossRef] [PubMed] [Google Scholar]
  27. R.M. May. Unanswered questions in ecology. Phil. Trans. R. Soc. Lond. B, 354 (1999), 1951-1959. [CrossRef] [Google Scholar]
  28. M.E.J. Newman. Self-organized criticality, evolution and the fossil extinction record. Proc. R. Soc. Lond. B, 263 (1996), 1605-1610. [CrossRef] [Google Scholar]
  29. M.E.J. Newman. A model of mass extinction. J. Theor. Biol., 189 (1997), 235-252. [CrossRef] [PubMed] [Google Scholar]
  30. M.E.J. Newman, R.G. Palmer. Models of Extinction: A Review. arXiv:adap-org/ 9908002v1 (1999). [Google Scholar]
  31. M. Paczuski, S. MaslovP. Bak. Avalanche dynamics in evolution, growth, and depinning models. Phys. Rev. E, 53 (1996), 414-443. [CrossRef] [Google Scholar]
  32. D.M. Raup. Biological extinction in earth history. Science, 231 (1986), 1528-1533. [CrossRef] [PubMed] [Google Scholar]
  33. D.M. Raup. A kill curve for phanerozoic marine species. Paleobiology, 17 (1991), 37-48. [PubMed] [Google Scholar]
  34. P.A. Rikvold. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution. J. Math. Biol., 55 (2007), 653-677. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  35. P.A. Rikvold, V. Sevim. Individual-based predator-prey model for biological coevolution: Fluctuations, stability, and community structure. Phys. Rev. E, 75 (2007), 051920. [CrossRef] [MathSciNet] [Google Scholar]
  36. P.A. Rikvold. Complex dynamics in coevolution models with ratio-dependent functional response. Ecol. Comp. (2009), in press. [Google Scholar]
  37. A.G. Rossberg, H. Matsuda, T. AmemiyaK. Itoh. An explanatory model for food-web structure and evolution. Ecol. Comp., 2 (2005), 312-321. [CrossRef] [Google Scholar]
  38. A.G. Rossberg, H. Matsuda, T. AmemiyaK. Itoh. Food webs: Experts consuming families of experts. J. Theor. Biol., 241 (2006), 552-563. [CrossRef] [PubMed] [Google Scholar]
  39. A.G. Rossberg, R. Ishii, T. AmemiyaK. Itoh. The top-down mechanism for body-mass-abundance scaling. Ecology, 89 (2008), 567-580. [CrossRef] [PubMed] [Google Scholar]
  40. F. SlaninaM. Kotrla. Extremal dynamics model on evolving networks. Phys. Rev. Lett., 83 (1999), 5587-5590. [CrossRef] [Google Scholar]
  41. R.V. Solé, J. Bascompte. Are critical phenomena relevant to large-scale evolution? Proc. R. Soc. Lond. B, 263 (1996), 161-168. [CrossRef] [Google Scholar]
  42. R.V. SoléS.C. Manrubia. Extinction and self-organized criticality in a model of large-scale evolution. Phys. Rev. E, 54 (1996), R42-R45. [CrossRef] [Google Scholar]
  43. R.V. Solé, S.C. Manrubia, M. BentonP. Bak. Self-similarity of extinction statistics in the fossil record. Nature, 388 (1997), 764-767. [CrossRef] [Google Scholar]
  44. D.B. Stouffer, J. Camacho, R. Guimerà, C.A. NgL.A. Nunes Amaral. Quantitative patterns in the structure of model and empirical food webs. Ecology, 86 (2005), 1301-1311. [CrossRef] [Google Scholar]
  45. D.B. Stouffer, J. CamachoL.A. Nunes Amaral. A robust measure of food web intervality. Proc. Nat. Acad. Sci., 103 (2006), 19015-19020. [CrossRef] [Google Scholar]
  46. S. Uchida, B. DrosselU. Brose. The structure of food webs with adaptive behaviour. Ecol. Mod., 206 (2007), 263-276. [CrossRef] [Google Scholar]
  47. P.H. Warren, J.H. Lawton. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia, 74 (1987), 231-235. [CrossRef] [PubMed] [Google Scholar]
  48. E.P. White, B.J. EnquistJ.L. Green. On estimating the exponent of power-law frequency distributions. Ecology, 89 (2008), 905-912. [CrossRef] [PubMed] [Google Scholar]
  49. R.J. WilliamsN.D. Martinez. Simple rules yield complex food webs. Nature, 404 (2000), 180-183. [CrossRef] [PubMed] [Google Scholar]
  50. R.J. WilliamsN.D. Martinez. Success and its limits among structural models of complex food webs. J. Anim. Ecol., 77 (2008), 512-519. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.