Free Access
Math. Model. Nat. Phenom.
Volume 5, Number 7, 2010
JANO9 – The 9th International Conference on Numerical Analysis and Optimization
Page(s) 16 - 22
Published online 26 August 2010
  1. B. Cochelin. A path-following technique via an asymptotic-numerical method. Computers Structures, 53 (1994), No. 5, 1181–1192. [CrossRef] [Google Scholar]
  2. B. Cochelin, N. Damil, M. Potier-Ferry. Méthode asymptotique numérique. Hermès-Lavoisier, Paris, 2007. [Google Scholar]
  3. A. Elhage-Hussein, M. Potier-Ferry, N. Damil. A numerical continuation method based on Padé approximants. Int.J. Solids and Structures, 37 (2000), 6981–7001. [CrossRef] [Google Scholar]
  4. J. J. Gervais, H. Sadiky. A new steplength control for continuation with the asymptotic numerical method. IAM, J. Nomer. Anal., 22 (2000), No. 2, 207–229. [CrossRef] [Google Scholar]
  5. H. Mottaqui, B. Braikat, N. Damil.Influence de la paramétrisation dans la méthode asymptotique numérique : Application au calcul de structures. Premier congrès Tunisien de mécanique, (2008), 173–174. [Google Scholar]
  6. W. C. Rheinboldt, J. V. Burkadt. A Localy parameterized continuation. Acm Transaction on Mathmatical Software, 9 (1983), No. 2, 215–235. [Google Scholar]
  7. R. Seydel. World of bifurcation, online collection and tutorials of nonlinear phenomena, ( (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.