Free Access
Issue |
Math. Model. Nat. Phenom.
Volume 6, Number 1, 2011
Instability and patterns. Issue dedicated to the memory of A. Golovin
|
|
---|---|---|
Page(s) | 138 - 148 | |
DOI | https://doi.org/10.1051/mmnp/20116107 | |
Published online | 09 June 2010 |
- T. M. Antonsen, Z. Fan, E. Ott, E. Garcia-Lopes. The role of chaotic orbits in the determination of power spectra of passive scalars. Phys. Fluids, 8 (1996), 3094–3104. [NASA ADS] [CrossRef] [Google Scholar]
- L. M. Pismen. Differential flow induced chemical instability and Turing instability for Couette flow. Phys. Rev. E, 58 (1998), 4524–4531. [CrossRef] [Google Scholar]
- J. Huisman, N. N. P. Thi, D. M. Karl, B. Sommeijer. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 439 (2002), 322–325. [CrossRef] [Google Scholar]
- Y. Khazan, L. M. Pismen. Differential flow induced chemical instability on a rotating disk. Phys. Rev. Lett., 75 (1995), 4318–4321. [CrossRef] [PubMed] [Google Scholar]
- M. Leconte, J. Martin, N. Rakotomalala, D. Salin. Pattern of reaction diffusion fronts in laminar flows. Phys. Rev. Lett., 90 (2002), 128302. [Google Scholar]
- G. Nicolis, G. Prigogine. Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wiley & Sons, New York, 1977. [Google Scholar]
- A. S. Pikovsky. Spatial development of chaos in nonlinear media. Phys. Lett. A, 137 (1989), 121–127. [CrossRef] [MathSciNet] [Google Scholar]
- A. Pikovsky, O. Popovych. Persistent patterns in deterministic mixing flows. Europhys. Lett., 61 (2003), 625–631. [CrossRef] [Google Scholar]
- L. Pismen. Patterns and interfaces in dissipative dynamics. Springer, Berlin, 2006. [Google Scholar]
- D. Rothstein, E. Henry, J. P. Gollub. Persistent patterns in transient chaotic fluid mixing. Nature, 401 (1999), 770–772. [CrossRef] [Google Scholar]
- A. B. Rovinsky, M. Menzinger. Differential flow instability in dynamical systems without an unstable (activator) subsystem. Phys. Rev. Lett., 72 (1994), 2017–2020. [CrossRef] [PubMed] [Google Scholar]
- A. Straube, M. Abel, A. Pikovsky. Temporal chaos versus spatial mixing in reaction-advection-diffusion systems. Phys. Rev. Lett., 93 (2004), 174501. [CrossRef] [PubMed] [Google Scholar]
- T. Tél, A. de Moura, C. Grebogi, G. Károlyi. Chemical and biological activity in open flows: a dynamical system approach. Physics Reports, 413 (2005), 91–196. [Google Scholar]
- A. M. Turing. The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London, Ser. B 237 (1952), 37–72. [Google Scholar]
- D. A. Vasquez Chemical instability induced by a shear flow. Phys. Rev. Lett., 93 (2004), 104501. [CrossRef] [PubMed] [Google Scholar]
- V. Z. Yakhnin, A. B. Rovinsky, M. Menzinger. Convective instability induced by differential transport in the tubular packed-bed reactor. Chemical Engineering Science, 50 (1995), 2853–2859. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.